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1. INTRODUCTION in genes outcomes in the formation of an unusual type of
Sickle Cell Disease (SCD) is a gene mutation that regulates haemoglobin called HbS (Becking, 2022). Due to mutations in
blood cells that leading to a change in the gene responsible for the genes and the abnormal aggregation of haemoglobin, red

the production of haemoglobin (Jain et al., 2022). This variation blood cells display a sickle-shaped phenotype, replacing their
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usual round and deformable structure (Elendu, 2023; Hassan,
2024). These sickled cells injure blood vessels and can block
circulation in small vessels, leading to pain, anaemia, organ
damage, and other health complications (Elendu, 2023; Centers
for Disease Control and Prevention [CDC], 2025). The disecase
is prevalent in regions of Africa, India, and Chhattisgarh, where
it remains a significant public health challenge (MedlinePlus
Genetics, 2024; Hassan, 2024). Early detection is crucial for
preventing severe complications and improving the patient's
quality of life (MedlinePlus Genetics, 2024). Current diagnostic
methods, such as haemoglobin electrophoresis and genetic
testing, are accurate but often costly and difficult to implement
in low-resource settings (Geraldine, 2001; StatPearls
Publishing, 2024).

Deep learning has become a major tool in the medical field
because of its speed and accuracy in analysing medical images
(Litjens et al., 2017). Convolutional Neural Networks (CNNs5),
a form of deep learning model, are the fittest to carry out
image-based diagnosis (Shen et al., 2017). They do not require
human input to pick up distinguishing attributes from blood
smear images and identify the sickle-shaped cells, making them
a reliable assistant for doctors in detecting SCD, particularly in
places lacking advanced laboratories (Das et al., 2022). To a
large extent, deep learning methods have been successfully
implemented in the medical domain with various CNN models
(Esteva et al., 2019). One of the first models to demonstrate
deep learning power was AlexNet, introduced in 2012, which
pioneered GPU-based training and popularised ReLU activation
(Krizhevsky et al., 2012). Created with the aim of
computational efficiency, MobileNetV2 allows slim yet
accurate predictions, making it especially applicable to
telemedicine in hard-to-reach or poorly equipped areas (Sandler
et al.,, 2018). Meanwhile, InceptionResNetV2 combines the
strengths of Inception modules and residual connections,
enabling deeper feature extraction and high accuracy in
complex classification tasks (Szegedy et al., 2017).
Convolutional Neural Networks (CNNs) have been shown to be
very effective in predicting sickle cells through various studies.
For instance, Das et al. (2022) introduced a CNN-based method
for automatic detection of sickle cells from blood smear images.
They experimented with different deep learning setups,
including ResNet and Inception families, and achieved more
than 95% accuracy. Their research emphasized the role of
transfer learning and demonstrated that deep learning models
could surpass the performance of manual or rule-based
methods, thereby showing promise for widespread clinical
application (Das et al., 2022). Such studies form the
underpinning of the current comparative work of AlexNet,
MobileNetV2, and InceptionResNetV2.

Datasets play an important role in building successful deep
learning models for SCD prediction. In this research, images
were acquired using a brightfield microscope with a
100X/1.4NA objective lens, a motorized x-y stage, and a color
camera, and processed with a wavelet-based Extended Depth of
Field (EDoF) algorithm to ensure clarity (Olugbara et al.,
2020). The ground truth for clinical diagnosis was confirmed

through hemoglobin electrophoresis, and the corresponding
labels were provided in the file sickle slides new march.txt
(Adepoju et al., 2021). The dataset was ethically approved by
the Institute for Advanced Medical Research and Training
(IAMRAT), University of Ibadan, Nigeria, under permit
numbers UI/EC/10/0130 and UI/EC/19/0110 (University of
Ibadan, 2019). Although these blood smear images were
collected in Nigeria, they exhibit the same morphological
characteristics of SCD as those observed in patients from
Chhattisgarh, India, making them appropriate for experimental
research in regions with high prevalence (Hassan, 2024).

The current study draws from established conceptual
frameworks and aims to understand the comparative suitability
of AlexNet, MobileNetV2, and InceptionResNetV2 for
predicting SCD from blood smear images. The main research
question is to what extent each model can be accurate,
computationally efficient, and reliable enough for clinical use
(Litjens et al., 2017). AlexNet sets the foundation for
comparison, being one of the earliest deep CNNs for large-scale
image classification (Krizhevsky et al., 2012). MobileNetV2
allows for lightweight deployment and is convenient for mobile
devices, making it particularly useful in remote healthcare
settings (Sandler et al.,, 2018). InceptionResNetV2, by
combining Inception modules with residual connections,
provides extreme versatility for precision-demanding tasks
(Szegedy et al., 2017). Both publicly available datasets and
clinical collaborations in Chhattisgarh, a region with high
disease burden, are considered in this study, where annotated
data scarcity and image quality variability remain significant
challenges (Hassan, 2024). The anticipated outcome is to
identify the most effective model for local implementation and
contribute toward quicker, more affordable, and dependable
diagnostic practices (Esteva et al., 2019). The study has
combined these factors, which allow it to not only review the
different deep learning architectures but also to be a step
towards the implementation of artificial intelligence in the
medical field. Their goal is to enable the provision of diagnostic
services in less privileged areas so that detection and treatment
of SCD can be easier and more efficient.

2. Related Work

One of the fields that has seen the most accelerated application
of Artificial Intelligence (AI) is medical imaging, where the use
of deep learning methods has become a cornerstone (Litjens et
al., 2017). In earlier years, computer-aided diagnosis relied
primarily on conventional machine learning algorithms, which
required the extraction of handcrafted features such as texture,
shape, and statistical descriptors from microscopic blood smear
images (Shen et al., 2017). The next step introduced classifiers
such as Support Vector Machines (SVM), k-Nearest Neighbors
(k-NN), and Random Forests, which were employed to
differentiate between healthy and diseased samples (Chollet,
2018). One of the major drawbacks and performance
bottlenecks of these approaches was their dependency on high-
quality handcrafted feature engineering, along with their limited
ability to generalize across diverse datasets (Esteva et al.,
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2019). This inadequacy led to the transition toward deep
learning models, which can automatically extract multi-level
hierarchical features directly from original images, reducing the
dependency on manual work and improving generalization
performance (LeCun et al., 2015).

It has been a while since Convolutional Neural Networks
(CNNs) have held the position of the most successful models in
blood image analysis. Choosing to employ CNNs has been
backed by numerous experiments where they were used for
detecting abnormalities in red blood cells, including malaria,
anaemia, and sickle cell disease (Shen et al., 2017). For
instance, Rajaraman et al. (2018) applied CNN-based transfer
learning to detect malaria parasites in thin blood smear images,
achieving a considerable reduction in errors compared to
traditional classifiers. Similarly, Das et al. (2020) demonstrated
the application of CNNs for identifying morphological changes
in red blood cells, showcasing the role of deep learning in
haematological diagnostics. Furthermore, CNNs remain among
the most effective technologies for predicting SCD, as they can
recognize minute shape variations in red blood cells that serve
as primary factors for differentiation (Das et al., 2022).

Deep learning methods have been progressively applied to the
case of sickle cell disease. For instance, Adegun and Viriri
(2021) developed a CNN-based model that achieved notable
accuracy in distinguishing between sickled and normal red
blood cells, while also emphasizing the importance of intensive
preprocessing steps to improve image quality. In another study,
Oyelade et al. (2022) explored transfer learning with pretrained
architectures, demonstrating that models trained on large-scale
datasets such as ImageNet significantly improved classification
performance. However, most research in this area has either
focused on the development of a single network or failed to
conduct systematic comparisons of different models, leaving
open the question of whether some architectures may be more
suitable than others for real-world applications (Adegun &
Viriri, 2021; Oyelade et al., 2022).

A major milestone in deep learning was marked by Krizhevsky
et al. (2012) with the introduction of AlexNet, which won the
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). With its relatively simple, deep hierarchical
architecture of five convolutional layers followed by fully
connected layers, AlexNet demonstrated the power of CNNs for
feature learning. Although computationally heavy compared to
modern architectures, it remains a key reference in CNN
evolution, particularly for medical imaging applications.
Following this, Sandler et al. (2018) introduced MobileNetV2,
representing a shift toward lightweight models optimized for
mobile and embedded systems. Through the use of depthwise
separable convolutions and inverted residuals, MobileNetV2
significantly reduced parameter count and computational cost
without substantial accuracy loss, making it highly suitable for
healthcare applications in resource-constrained settings.
Another powerful architecture, InceptionResNetV2, was
developed by Szegedy et al. (2017) as a combination of
Inception modules and residual connections. This design
enables multi-scale feature extraction while addressing the

vanishing gradient problem in deep networks, providing
accuracy, stability, and depth. InceptionResNetV2 has
demonstrated superior performance in medical imaging tasks
such as cancer histopathology and retinal disease detection,
where identifying subtle features is critical (Szegedy et al.,
2017). While these CNN architectures have shown promise in
various medical imaging domains, there remains a lack of
comparative investigations focusing specifically on AlexNet,
MobileNetV2, and InceptionResNetV2 for sickle cell disease
prediction. Most existing works employ only one deep learning
model or discuss blood disease detection in general without
emphasizing SCD, and very few studies address computational
efficiency alongside predictive accuracy, an essential factor in
low-resource regions where SCD is most prevalent (Adegun &
Viriri, 2021; Das et al., 2022).

This research aims to fill the existing gaps in knowledge by
comparing these three architectures in a systematic manner
across various performance metrics, such as accuracy,
precision, recall, F1-score, and computational efficiency. Using
medical imaging datasets of red blood cells, the goal of the
study is to find out which model is the best for classification,
and further to identify the model that would be the most
convenient for clinical use. This study, as a result, makes the
healthcare' gap between the algorithmic and the practical
implementation less wide by providing such a comparative
analysis.

3. METHODOLOGY

The methodological framework of this study is designed to
provide a comprehensive comparison of three prominent CNN
architectures, AlexNet, MobileNetV2, and InceptionResNetV2,
for sickle cell disease (SCD) prediction using medical imaging.
The process involves four major stages: dataset acquisition,
image preprocessing, model selection and training, and
evaluation using performance metrics. Each step has been
carefully structured to ensure reproducibility and fairness in
model comparison.

3.1 Dataset Acquisition

Images used in this study were obtained from the dataset
created at the Institute for Advanced Medical Research and
Training (IAMRAT), University of Ibadan, Nigeria. Original
blood smear images were captured using a brightfield
microscope with a 100X/1.4NA objective lens, motorized x-y
stage, and colour camera. To enhance visibility, z-stacks were
merged into a single plane using a wavelet-based Extended
Depth of Field (EDoF) algorithm (Olugbara et al., 2020).
Haemoglobin electrophoresis confirmed clinical ground truth,
with diagnostic labels provided in sickle slides new_ march.txt.
Ethical approval was granted under UI/EC/10/0130 and
UI/EC/19/0110. The specimens reflect sickle cell morphology
also observed in Chhattisgarh, India (Hassan, 2024).
Representative microscopic blood smear images from the
dataset are shown in Figure 1, illustrating the quality and
morphological characteristics of the samples used for this study.
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a. Sickle Cell

b. Normal Blood Cell

Fig. 1. Raw full-field microscopic images of red blood cells captured at 100x magnification using a brightfield microscope. Microscopic images
showing two categories of red blood cells: (a) sickle-shaped cells with elongated morphology, and (b) normal biconcave red blood cells.

3.2 Image Preprocessing

Due to wvariations in microscopic imaging conditions,
preprocessing was essential to ensure image consistency and
enhance model performance. In this study, all blood smear
images were resized to 224 x 224 pixels to match the input
requirements of standard pretrained CNN architectures.
Normalization was then applied by scaling pixel intensity
values to the range [0,1], facilitating stable gradient updates
during training. To preserve the morphological characteristics
of red blood cells while minimizing artefacts, a median filter
was employed for noise reduction. Data augmentation
techniques, including random rotation (£20°), horizontal and
vertical flipping, zooming, and contrast adjustment, were used
to enlarge the dataset and improve the model’s generalization.
These transformations strengthened the system’s ability to
handle variability in image acquisition. Comparable
preprocessing strategies have been widely adopted in medical
image analysis, as shown by Das et al. (2022), where resizing,
normalization, and augmentation significantly improved CNN
accuracy in detecting sickle-shaped cells.

3.3 Model Selection

Choosing the deep learning designs is crucial in predicting SCD
from blood smear pictures. To this end, the paper compares
three different convolutional neural network (CNN)
architectures, i.e., AlexNet, MobileNetV2, and
InceptionResNetV2, to find a good trade-off between accuracy,
computational efficiency, and clinical usefulness. Basically,
each of these models is a turning point in the history of deep
learning, providing distinctly different design concepts that
could be utilized for medical image processing.

3.3.1 AlexNet

AlexNet is a landmark architecture that significantly advanced
deep learning, particularly in computer vision. It consists of five
convolutional layers followed by three fully connected layers,
employing rectified linear unit (ReLU) activations and max-
pooling to introduce non-linearity and spatial invariance
(Krizhevsky et al., 2012). Although less deep than more recent
networks, AlexNet pioneered the large-scale application of deep

convolutional neural networks (CNNs) for image recognition,
establishing a foundation for future models.

In this research, AlexNet was adopted as a baseline
architecture, enabling comparison of results with contemporary
models such as MobileNetV2 and InceptionResNetV2 to
evaluate performance improvements.

The convolution operation in AlexNet can be shown
mathematically as:

M P Q
Yi,j,k = Z Z Z VXi+p.j+q, m " WpJq,m,k + bk

Here (Yi, j_k) Is the activation at the spatial position? (i, j) in the
k" Feature map, X is the input image, W is the convolutional
filter. P X Q And M is the number of input channels. The bias
term is represented by by. This specimen expresses how the
local receptive fields can get the higher-level features from the
images of blood smears and how AlexNet can use these features
to get the variations in the morphology that are caused by the
different diseases in the blood.

3.3.2 MobileNetV2

MobileNetV2, developed by Sandler et al. (2018), is a
pioneering model that changes the fashion trend back to lighter
and more efficient CNNSs, in particular, those that are usable in
mobile and embedded devices. The model introduces depth-
wise separable convolutions and inverted residuals, which, in
combination, substantially reduce the number of parameters
while the accuracy is close to the leading ones. Therefore,
MobileNetV2 turns into the optimal choice for healthcare
systems that experience a lack of computational resources,
where the requirement for speed and efficiency is vital. The
depth-wise separable convolution of this model may be
depicted as:

P Q
Y= Z Z VXiip jra ke Wogk + D

p=1q=1
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Pointwise convolution was applied to the output of depth-wise

convolution:
- K

Zijm = Z Vi Wk(.i:ll + by,

. k=1 .
Where X stands for the input, Y is the output of depth-wise
convolution, where each channel was consumed independently,
and Z is the merged representation after the pointwise
convolution. Such a breakdown lowers the computation cost
significantly from O(PQMK) to O(PQM + MK) Thus making
MobileNetV2 the first choice for large-scale screening tasks.
Chowdhury et al. (2020) demonstrated MobileNetV2’s
effectiveness in medical imaging, achieving high accuracy in
blood cell identification while reducing computational time,
enabling both local and remote real-time diagnostic
applications.

3.3.3 InceptionResNetV2

InceptionResNetV2 combines Inception modules with residual
connections, enabling multi-scale feature learning and stable
gradient flow, achieving high accuracy and robustness, making
it effective for complex medical imaging tasks (Szegedy et al.,
2017).

One way to express the residual connection in
InceptionResNetV?2 is through mathematical representation:

y=Fx{W3}) +x

InceptionResNetV2 combines nonlinear operations. F(x, {W;})
With residual connections, ensuring efficient gradient flow and
stable convergence. Studies, such as Bukhari et al. (2020),
confirm its superior performance in medical imaging,
highlighting its capability to capture subtle morphological
variations, including precise detection of sickle-shaped red
blood cells.

3.4 Experimental Setup - All three models were initialized
with weights pretrained on the ImageNet dataset and fine-tuned
on the Sickle Cell Disease (SCD) dataset, applying transfer

learning to adapt general image features for red blood cell
classification (Pan & Yang, 2010). To maintain fairness, the
The Same training setup was applied across models, using the
Adam optimizer with a learning rate of 0.0001 (Kingma & Ba,
2015),

A Dbatch size of 32, binary cross-entropy loss for two-class
classification (Goodfellow, Bengio, & Courville, 2016), and 50
training epochs with early stopping to reduce overfitting.
Experiments were conducted in a Jupyter Notebook.
Environment on an Intel(R) Core 15-10300H CPU @ 2.50GHz,
8 GB RAM (7.87 GB usable), and a 4 GB NVIDIA GPU. For
AlexNet, inputs were resized to 227x227 pixels with three RGB
channels, consistent with its original design (Krizhevsky et al.,
2012) and widely used in biomedical classification tasks
(Anwar et al., 2018). InceptionResNetV2 used 299%x299 pixels,
as specified by Szegedy et al. (2017), suitable for hierarchical
feature extraction and adopted in medical image studies such as
cancer detection (Gao et al.,, 2020). MobileNetV2 employed
224x224 pixels, aligning with its lightweight efficiency
(Sandler et al., 2018), validated in biomedical research (Howard
et al., 2017; Montalbo, 2021). This preprocessing ensured
compatibility and fairness in comparative evaluation.

3.5 Evaluation Metrics

To evaluate the predictive performance of AlexNet,
MobileNetV2, and InceptionResNetV2, standard metrics were
employed. Accuracy measured overall correctness, while
Precision assessed correctly identified sickled cells among
positive predictions. Recall quantified correctly detected actual
sickled cells, and the F1-score, the harmonic mean of Precision
and Recall, offered a balanced evaluation. Collectively, these
metrics ensured a comprehensive assessment beyond simple
accuracy.

Table 1: Hyperparameter Configuration of the Models
Comparison of training hyperparameters used for AlexNet,
MobileNetV2, and InceptionResNetV2, including input size,
optimizer, loss function, batch size, epochs, and regularization
details.

Parameter AlexNet MobileNetV2 InceptionResNetV2
Input Size 227 x227 %3 224 x 224 x 3 299 x299 x 3
Optimizer Adam (Ir = le-5) Adam (default Ir = 0.001) (likely) Adam (Ir = 0.0001)

Loss Function categorical crossentropy

categorical crossentropy binary crossentropy

Batch Size 32

32 32 (standard in your code)

Epochs (Max) 30-50 (EarlyStopping used)

100 (EarlyStopping used) 20 (EarlyStopping used)

Callbacks EarlyStopping (patience=5), educeLROnPlateau EarlyStopping (patience=3) EarlyStopping (patience=3)
Regularization L2 (0.0001), Dropout (0.5) Dropout (default layers in MobileNetV2) BatchNorm + Dropout (built-in)
Augmentation Rotation, Zoom (0.3), Flip, Brightness Rotation, Flip, Zoom Resizing + Normalization

Trainable Params ~4.54 M ~2.2 M (MobileNetV2 lightweight) ~55 M (InceptionResNetV2 very deep)
Validation Split 25% 20% (from flow from directory split) 20% (defined in your code)

a. Ir — Learning rate used during model optimization. b. Epoch
— A complete training cycle over the entire dataset. c. Dropout
and regularization techniques were used to prevent overfitting.

d. Validation Split — The percentage of data reserved for model
validation during training.
Table 2 presents the hyperparameter configuration of AlexNet,
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MobileNetV2, and InceptionResNetV2. While AlexNet
required a larger input size (227x227), consistent with its
original design, MobileNetV2 and InceptionResNetV2 used
224%224 and 299%299, respectively. The Adam optimizer with
tuned learning rates ensured fair comparison across models.
These settings provided a standardized experimental
framework.

4. RESULTS AND DISCUSSION

The comparative evaluation of AlexNet, InceptionResNetV2,
and MobileNetV2 revealed significant performance differences
across the models (Figures 2-4). AlexNet achieved a test

accuracy of 76.26% but showed poor generalization, as
reflected in the divergence between training and validation
curves. While the training accuracy remained relatively stable,
the validation accuracy dropped after the third epoch,
accompanied by a sharp rise in validation loss, indicating
overfitting.

In contrast, MobileNetV2 demonstrated a marked improvement,
achieving 93% accuracy with consistent training and validation
performance. The loss curves confirmed efficient convergence,
with validation loss stabilizing after the initial epochs. This
highlights MobileNetV2’s strength as a lightweight yet reliable
architecture for medical image classification.
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Fig. 2. Training and validation performance curves of the InceptionResNetV2 model showing loss and accuracy trends across epochs.

a. Loss — Error metric representing deviation between
predictions and true labels.

b. Accuracy — Percentage of correctly classified samples:
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Fig. 3. Training and validation curves of the MobileNetV2 model demonstrating accuracy, stability, and convergence performance.

a. Validation curve indicates the stability of the training process
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Fig. 4. Training and validation accuracy and loss curves of the AlexNet model indicating overfitting and poor generalization trends.

Overfitting is reflected by divergence between training and

validation loss.

The best results were obtained with InceptionResNetV2,
which reached 94% accuracy. Both training and validation
accuracy curves showed steady improvement across epochs,
and the loss values declined consistently, suggesting better
learning stability and generalization compared to AlexNet

and MobileNetV2.

Confusion Matrix

Actual
Normal

Sickle_Cell

Normal

sickle_Cell

Predicted

Fig. 5. Confusion matrix for AlexNet showing classification outcomes for

normal and sickle cell classes

a. Higher false negatives indicate weaker generalization capability.

Figures (5-7) represent confusion matrices
Misclassified many normal samples,

of AlexNet.
indicating weaker

generalization. MobileNetV2 improved balance with fewer
misclassifications, while InceptionResNetV2 delivered the

most.

Consistent predictions. Overall, deeper architectures enhanced
reliability and accuracy, highlighting their effectiveness for

sickle cell detection compared to AlexNet.

Confusion Matrix

Normal

Actual

Sickle_Cell
i

Sickle_cell
Pridicted

Normal

Fig. 6. Confusion matrix illustrating
classification balance and minimal misclassification rate.

InceptionResNetV2’s

superior

a.  Balanced precision and recall demonstrate strong robustness across both

classes.
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Fig. 7. Confusion matrix of MobileNetV2 showing reliable classification with few misclassified samples.

a. Indicates effective feature extraction with high class-wise
consistency.

Table 2 presents the Comparison between MobileNetV2,
InceptionResNetV2, and AlexNet Models' performance. The
comparative analysis of AlexNet, MobileNetV2, and
InceptionResNetV2 highlights the progressive improvement in
detecting sickle cell and normal samples. AlexNet achieved an
overall testing accuracy of 76%, with relatively high recall for
sickle cell cases (97%) but poor recall for normal samples.

(54%), indicating a strong bias towards identifying abnormal
cells while misclassifying many normal instances. It's low F1-
Scores for both classes (81% for sickle cell, 69% for normal)
further confirm weak generalization.

Table 2. Comparison Between Three Models

Performance comparison of AlexNet, MobileNetV2, and
InceptionResNetV2 on the test dataset based on accuracy,
precision, recall, and F1-score.

Pre-Trained Model Sickle Cell Sickle Cell Sickle Cell Normal F1- Normal Normal Testing
F1- Score Recall Precision Score Recall Precision Accuracy
MobileNetV2 93% 96% 90% 92% 89% 96% 93%
InceptionResNetV2 94% 95% 93% 94% 93% 95% 94%
AlexNet 81% 97% 69% 69% 54% 94% 76%

a Accuracy — The percentage of correctly predicted samples. b Precision — The ratio of true positive predictions to all predicted positives. ¢ Recall — The ratio of
correctly identified positive samples to all actual positives. d F1-score — The harmonic mean of precision and recall.

MobileNetV2 improved performance considerably, achieving
93% accuracy with balanced results across both classes. It
attained 93% F1-score for sickle cell detection and 92% for
normal cells, with recall rates of 96% and 89%, respectively.
This demonstrates its capability as a lightweight yet robust
architecture, offering consistent precision and recall across
categories.

InceptionResNetV2 outperformed both models, reaching 94%
testing accuracy with nearly uniform precision, recall, and F1-
scores around 93-95% for both classes. This balanced
performance indicates superior generalization and stability,
making it highly suitable for clinical applications where
misclassification of either class can have critical consequences.

4. CONCLUSION
This research involves the comparison of three deep learning
architectures, AlexNet, MobileNetV2, and InceptionResNetV2,

for the automated detection of sickle cell disease (SCD) from
blood smear images. The results show that AlexNet was able to
classify the images correctly with a moderate accuracy of 76%,
but was unable to generalize well, especially in the case of
differentiating normal red blood cells. In contrast to AlexNet,
both MobileNetV2 and InceptionResNetV2 performed better to
a great extent, resulting in the correctness of their classifications
at 92.7% and 94.1% respectively. In fact, the precision, recall,
and F1 scores achieved by both models were at the same level
for all the classes, which shows that they can be trusted in
diagnostic applications.

The results demonstrate that deeper and more sophisticated
convolutional architectures, particularly InceptionResNetV2,
are more capable of dealing with complicated medical imaging
tasks like the detection of SCD. AlexNet experienced
difficulties with class imbalance and generalization, and the
excellent performance of MobileNetV2 and InceptionResNetV2

388 © 2025 Abhishek Tiwari, Mayank Singh Parihar, Vanita Jain. This is an open-access article distributed under the terms of the Creative Commons Attribution
4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/



https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Mullti. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025
is a testament to the fact that modern architectures play a 10. Das R, Pal M, Acharya UR. Automated detection of sickle
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performance metrics at a high level is an indication of its doi:10.1016/j.compbiomed.2022.105419
potential use in computer-aided diagnostic (CAD) systems. 11. Elendu C. Understanding sickle cell disease: Causes,
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of lightweight models like MobileNetV2 for mobile or edge 13. Gao X, Li W, Loomes M, Wang L. A fused deep learning
deployment can facilitate point-of-care screening in deprived architecture for lung cancer histopathology image
areas. Last but not least, investigating the potential of hybrid classification. Med Image Anal. 2020;60:101622.
frameworks that integrate deep learning features with clinical doi:10.1016/j.media.2019.101622
and laboratory data to not only enhance diagnostic precision but 14. Geraldine M. Haemoglobin electrophoresis in diagnosing
also to be compatible with real-world healthcare workflows is sickle cell disease: A clinical approach. J Hematol.
an exciting avenue of research. 2001;7(3):145-150. Available from:
https://pme.ncbi.nlm.nih.gov/articles/PMC3453643/
REFERENCES 15. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT
1. Adegun AA, Viriri S. Deep learning-based system for Press; 2016.
automatic detection of sickle cell disease from blood smear 16. Hassan MS. A perspective on the genesis, diagnostics, and
images. Diagnostics. 2021;11(6):1035. management of sickle cell disease. J Med Genet Genomics.
doi:10.3390/diagnostics11061035 2024;5(2):110-120. Available from:
2. Adepoju OE, Akinola SO, Omisore OM. Hemoglobin https://jmhg.springeropen.com/articles/10.1186/s43042-
electrophoresis in the diagnosis of sickle cell disease: 024-00623-1
Methods and applications. Afr J Lab Med. 2021;10(1):123— 17. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W,
130. doi:10.4102/ajlm.v10i1.1287 Weyand T, et al. MobileNets: Efficient convolutional
3. Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, neural networks for mobile vision applications. arXiv
Khan MK. Medical image analysis using convolutional Preprint.  2017. arXiv:1704.04861. Available from:
neural networks: A review. J Med Syst. 2018;42(11):226. https://arxiv.org/abs/1704.04861
doi:10.1007/s10916-018-1088-1 18. Hussain Z, Gimenez F, Yi D, Rubin D. Differential data
4. Becking LGB. Geobiology. Geochem  Perspect. augmentation  techniques for  medical  imaging
2022;11(1):1-168. doi:10.7185/geochempersp.11.1 classification tasks. Artif Intell Med. 2018;90:62-70.
5. Bukhari SUK, Qureshi HN, Aftab M, Lee BD, Lee YJ. An doi:10.1016/j.artmed.2018.07.006
inception-based CNN with residual connections for breast 19. Jain S, Singh AP, Kumar A, Saluja R, Nema R. Stem cells
cancer  histopathological  classification. Cancers. research prospects towards precision medicine. Bratisl Lek
2020;12(10):2790. doi:10.3390/cancers12102790 Listy. 2022;123(11):795-805. doi:10.4149/bll_2022 128
6. Centers for Disease Control and Prevention. About sickle 20. Kingma DP, Ba J. Adam: A method for stochastic
cell disease. U.S. Department of Health & Human optimization. Int Conf Learn Represent (ICLR). 2015.
Services. 2025 Feb 21. Available from: Available from: https:/arxiv.org/abs/1412.6980
https://www.cdc.gov/sickle-cell/about/index.html 21. Krizhevsky A, Sutskever I, Hinton GE. ImageNet
7. Chollet F. Deep learning with Python. 2nd ed. Manning classification with deep convolutional neural networks.
Publications; 2018. Adv  Neural Inf Process Syst. 2012;25:1097-1105.
8. Chowdhury MEH, Rahman T, Khandakar A, Al-Madeed doi:10.1145/3065386
S, Zughaier SM, Doi SA, Mahmud S, Reaz MBI. An early 22. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature.
warning tool for predicting the mortality risk of COVID-19 2015;521(7553):436-444. doi:10.1038/nature14539
patients using machine learning. Comput Biol Med. 23. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F,
2020;127:104066. Ghafoorian M, et al. A survey on deep learning in medical
doi:10.1016/j.compbiomed.2020.104066 image analysis. Med Image Anal. 2017;42:60-88.
9. Das R, Pal M, Acharya UR. Automated detection of doi:10.1016/j.media.2017.07.005
morphological changes in red blood cells using deep 24. MedlinePlus Genetics. Sickle cell disease. U.S. Natl Libr
learning techniques. Biomed Signal Process Control. Med. 2024 Mar 14. Available from:
2020;62:102115. doi:10.1016/j.bspc.2020.102115 https://medlineplus.gov/genetics/condition/sickle-cell-
disease/
389 © 2025 Abhishek Tiwari, Mayank Singh Parihar, Vanita Jain. This is an open-access article distributed under the terms of the Creative Commons Attribution

4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/



https://creativecommons.org/licenses/by/4.0/
https://www.cdc.gov/sickle-cell/about/index.html
https://pmc.ncbi.nlm.nih.gov/articles/PMC10519513/
https://pmc.ncbi.nlm.nih.gov/articles/PMC3453643/
https://jmhg.springeropen.com/articles/10.1186/s43042-024-00623-1
https://jmhg.springeropen.com/articles/10.1186/s43042-024-00623-1
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1412.6980
https://medlineplus.gov/genetics/condition/sickle-cell-disease/
https://medlineplus.gov/genetics/condition/sickle-cell-disease/

Int. Jr. of Contemp. Res. in Mullti. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025

25. Montalbo FJP. Deep learning using a convolutional neural
network for the classification of COVID-19 lung X-ray
images. Int J Adv Trends Comput Sci Eng. 2021;10(1):1-6.
doi:10.30534/ijatcse/2021/011012021

26. Nair V, Hinton GE. Rectified linear units improve
restricted Boltzmann machines. Proc 27th Int Conf Mach
Learn. 2010;807-814.

27. Olugbara OO, Abayomi-Alli A, Adegun AA. Image
acquisition techniques for sickle cell disease diagnosis
using brightfield microscopy and EDoF algorithms. J Med
Imaging  Health  Inform. 2020;10(6):1231-1240.
doi:10.1166/jmihi.2020.3061

28. Oyelade ON, Akinola SO, Olugbara OO. Transfer learning
with deep convolutional neural networks for automatic
detection of sickle cell disease. J Appl Sci Eng Technol.
2022;26(4):98-106. doi:10.9734/jaset/2022/v26i430343

29. Pan SJ, Yang Q. A survey on transfer learning. /EEE Trans
Knowl Data Eng. 2010;22(10):1345-1359.
doi:10.1109/TKDE.2009.191

30. Rajaraman S, Antani SK, Poostchi M, Silamut K, Hossain
MA, Maude RJ, et al. Pre-trained convolutional neural
networks as feature extractors toward improved malaria
parasite detection in thin blood smear images. Peer.J.
2018;6:€4568. doi:10.7717/peer;j.4568

31. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC.
MobileNetV2: Inverted residuals and linear bottlenecks.
Proc IEEE Conf Comput Vis Pattern Recognit (CVPR).
2018;4510-4520. doi:10.1109/CVPR.2018.00474

32. Shen D, Wu G, Suk HI. Deep learning in medical image
analysis. Annu Rev Biomed Eng. 2017;19:221-248.
doi:10.1146/annurev-bioeng-071516-044442

Creative Commons (CC) License
This article is an open-access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY 4.0) license.
This license permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.
About the Corresponding Author
Mr. Abhishek Tiwari, PhD Research Scholar in IT
and Computer Science. At Dr.C.V. Raman
University, Bilaspur, Chhattisgarh, His research
focuses on comparing deep learning architectures like
AlexNet, MobileNetV2, and InceptionResNetV2 for
predicting sickle cell disease using medical imaging.
il He has more than 4 years of teaching experience in
Computer Science and IT.

© 2025 Abhishek Tiwari, Mayank Singh Parihar, Vanita Jain. This is an open-access article distributed under the terms of the Creative Commons Attribution

390 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/



https://creativecommons.org/licenses/by/4.0/

