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Abstract Manuscript Information 

 

Sickle Cell Disease (SCD) continues to be a major challenge to people's health worldwide, 

especially in areas that lack sufficient resources, where early and accurate diagnosis is of 

utmost importance for proper clinical management. Automated medical image analysis 

powered by deep learning has become a highly effective way to improve diagnostic precision 

and speed. This work is a comparative evaluation of three major convolutional neural network 

(CNN) architectures, AlexNet, MobileNetV2, and InceptionResNetV2, in the prediction of 

SCD from microscopic blood smear images. Accuracy, precision, recall, F1-score, and 

computational efficiency were the metrics used to evaluate the models. 

The InceptionResNetV2 obtained the highest accuracy (94%) and also showed the greatest 

classification robustness; thus, it is very suitable for incorporation into advanced clinical 

diagnostic systems, according to experimental results. MobileNetV2, with slightly lower 

accuracy (93%), was highly computationally efficient and had a very short inference time, 

which makes it very suitable for real-time deployment in healthcare environments with limited 

resources. On the other hand, AlexNet, a CNN breakthrough, exhibited comparatively lower 

predictive performance. 

Therefore, the findings of this study suggest that the best model choice will depend on the 

intended use scenario, as a trade-off between diagnostic accuracy and computational 

constraints. This work moves the field of AI-assisted hematology forward and is a deep 

learning breakthrough that has enormous potential in the early diagnosis and management of 

Sickle Cell Disease. 
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1. INTRODUCTION 

Sickle Cell Disease (SCD) is a gene mutation that regulates 

blood cells that leading to a change in the gene responsible for 

the production of haemoglobin (Jain et al., 2022). This variation 

in genes outcomes in the formation of an unusual type of 

haemoglobin called HbS (Becking, 2022). Due to mutations in 

the genes and the abnormal aggregation of haemoglobin, red 

blood cells display a sickle-shaped phenotype, replacing their 
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usual round and deformable structure (Elendu, 2023; Hassan, 

2024). These sickled cells injure blood vessels and can block 

circulation in small vessels, leading to pain, anaemia, organ 

damage, and other health complications (Elendu, 2023; Centers 

for Disease Control and Prevention [CDC], 2025). The disease 

is prevalent in regions of Africa, India, and Chhattisgarh, where 

it remains a significant public health challenge (MedlinePlus 

Genetics, 2024; Hassan, 2024). Early detection is crucial for 

preventing severe complications and improving the patient's 

quality of life (MedlinePlus Genetics, 2024). Current diagnostic 

methods, such as haemoglobin electrophoresis and genetic 

testing, are accurate but often costly and difficult to implement 

in low-resource settings (Geraldine, 2001; StatPearls 

Publishing, 2024). 

Deep learning has become a major tool in the medical field 

because of its speed and accuracy in analysing medical images 

(Litjens et al., 2017). Convolutional Neural Networks (CNNs), 

a form of deep learning model, are the fittest to carry out 

image-based diagnosis (Shen et al., 2017). They do not require 

human input to pick up distinguishing attributes from blood 

smear images and identify the sickle-shaped cells, making them 

a reliable assistant for doctors in detecting SCD, particularly in 

places lacking advanced laboratories (Das et al., 2022). To a 

large extent, deep learning methods have been successfully 

implemented in the medical domain with various CNN models 

(Esteva et al., 2019). One of the first models to demonstrate 

deep learning power was AlexNet, introduced in 2012, which 

pioneered GPU-based training and popularised ReLU activation 

(Krizhevsky et al., 2012). Created with the aim of 

computational efficiency, MobileNetV2 allows slim yet 

accurate predictions, making it especially applicable to 

telemedicine in hard-to-reach or poorly equipped areas (Sandler 

et al., 2018). Meanwhile, InceptionResNetV2 combines the 

strengths of Inception modules and residual connections, 

enabling deeper feature extraction and high accuracy in 

complex classification tasks (Szegedy et al., 2017). 

Convolutional Neural Networks (CNNs) have been shown to be 

very effective in predicting sickle cells through various studies. 

For instance, Das et al. (2022) introduced a CNN-based method 

for automatic detection of sickle cells from blood smear images. 

They experimented with different deep learning setups, 

including ResNet and Inception families, and achieved more 

than 95% accuracy. Their research emphasized the role of 

transfer learning and demonstrated that deep learning models 

could surpass the performance of manual or rule-based 

methods, thereby showing promise for widespread clinical 

application (Das et al., 2022). Such studies form the 

underpinning of the current comparative work of AlexNet, 

MobileNetV2, and InceptionResNetV2. 

Datasets play an important role in building successful deep 

learning models for SCD prediction. In this research, images 

were acquired using a brightfield microscope with a 

100X/1.4NA objective lens, a motorized x-y stage, and a color 

camera, and processed with a wavelet-based Extended Depth of 

Field (EDoF) algorithm to ensure clarity (Olugbara et al., 

2020). The ground truth for clinical diagnosis was confirmed 

through hemoglobin electrophoresis, and the corresponding 

labels were provided in the file sickle_slides_new_march.txt 

(Adepoju et al., 2021). The dataset was ethically approved by 

the Institute for Advanced Medical Research and Training 

(IAMRAT), University of Ibadan, Nigeria, under permit 

numbers UI/EC/10/0130 and UI/EC/19/0110 (University of 

Ibadan, 2019). Although these blood smear images were 

collected in Nigeria, they exhibit the same morphological 

characteristics of SCD as those observed in patients from 

Chhattisgarh, India, making them appropriate for experimental 

research in regions with high prevalence (Hassan, 2024). 

The current study draws from established conceptual 

frameworks and aims to understand the comparative suitability 

of AlexNet, MobileNetV2, and InceptionResNetV2 for 

predicting SCD from blood smear images. The main research 

question is to what extent each model can be accurate, 

computationally efficient, and reliable enough for clinical use 

(Litjens et al., 2017). AlexNet sets the foundation for 

comparison, being one of the earliest deep CNNs for large-scale 

image classification (Krizhevsky et al., 2012). MobileNetV2 

allows for lightweight deployment and is convenient for mobile 

devices, making it particularly useful in remote healthcare 

settings (Sandler et al., 2018). InceptionResNetV2, by 

combining Inception modules with residual connections, 

provides extreme versatility for precision-demanding tasks 

(Szegedy et al., 2017). Both publicly available datasets and 

clinical collaborations in Chhattisgarh, a region with high 

disease burden, are considered in this study, where annotated 

data scarcity and image quality variability remain significant 

challenges (Hassan, 2024). The anticipated outcome is to 

identify the most effective model for local implementation and 

contribute toward quicker, more affordable, and dependable 

diagnostic practices (Esteva et al., 2019). The study has 

combined these factors, which allow it to not only review the 

different deep learning architectures but also to be a step 

towards the implementation of artificial intelligence in the 

medical field. Their goal is to enable the provision of diagnostic 

services in less privileged areas so that detection and treatment 

of SCD can be easier and more efficient. 

 

2. Related Work 

One of the fields that has seen the most accelerated application 

of Artificial Intelligence (AI) is medical imaging, where the use 

of deep learning methods has become a cornerstone (Litjens et 

al., 2017). In earlier years, computer-aided diagnosis relied 

primarily on conventional machine learning algorithms, which 

required the extraction of handcrafted features such as texture, 

shape, and statistical descriptors from microscopic blood smear 

images (Shen et al., 2017). The next step introduced classifiers 

such as Support Vector Machines (SVM), k-Nearest Neighbors 

(k-NN), and Random Forests, which were employed to 

differentiate between healthy and diseased samples (Chollet, 

2018). One of the major drawbacks and performance 

bottlenecks of these approaches was their dependency on high-

quality handcrafted feature engineering, along with their limited 

ability to generalize across diverse datasets (Esteva et al., 
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2019). This inadequacy led to the transition toward deep 

learning models, which can automatically extract multi-level 

hierarchical features directly from original images, reducing the 

dependency on manual work and improving generalization 

performance (LeCun et al., 2015). 

It has been a while since Convolutional Neural Networks 

(CNNs) have held the position of the most successful models in 

blood image analysis. Choosing to employ CNNs has been 

backed by numerous experiments where they were used for 

detecting abnormalities in red blood cells, including malaria, 

anaemia, and sickle cell disease (Shen et al., 2017). For 

instance, Rajaraman et al. (2018) applied CNN-based transfer 

learning to detect malaria parasites in thin blood smear images, 

achieving a considerable reduction in errors compared to 

traditional classifiers. Similarly, Das et al. (2020) demonstrated 

the application of CNNs for identifying morphological changes 

in red blood cells, showcasing the role of deep learning in 

haematological diagnostics. Furthermore, CNNs remain among 

the most effective technologies for predicting SCD, as they can 

recognize minute shape variations in red blood cells that serve 

as primary factors for differentiation (Das et al., 2022). 

Deep learning methods have been progressively applied to the 

case of sickle cell disease. For instance, Adegun and Viriri 

(2021) developed a CNN-based model that achieved notable 

accuracy in distinguishing between sickled and normal red 

blood cells, while also emphasizing the importance of intensive 

preprocessing steps to improve image quality. In another study, 

Oyelade et al. (2022) explored transfer learning with pretrained 

architectures, demonstrating that models trained on large-scale 

datasets such as ImageNet significantly improved classification 

performance. However, most research in this area has either 

focused on the development of a single network or failed to 

conduct systematic comparisons of different models, leaving 

open the question of whether some architectures may be more 

suitable than others for real-world applications (Adegun & 

Viriri, 2021; Oyelade et al., 2022). 

A major milestone in deep learning was marked by Krizhevsky 

et al. (2012) with the introduction of AlexNet, which won the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC). With its relatively simple, deep hierarchical 

architecture of five convolutional layers followed by fully 

connected layers, AlexNet demonstrated the power of CNNs for 

feature learning. Although computationally heavy compared to 

modern architectures, it remains a key reference in CNN 

evolution, particularly for medical imaging applications. 

Following this, Sandler et al. (2018) introduced MobileNetV2, 

representing a shift toward lightweight models optimized for 

mobile and embedded systems. Through the use of depthwise 

separable convolutions and inverted residuals, MobileNetV2 

significantly reduced parameter count and computational cost 

without substantial accuracy loss, making it highly suitable for 

healthcare applications in resource-constrained settings. 

Another powerful architecture, InceptionResNetV2, was 

developed by Szegedy et al. (2017) as a combination of 

Inception modules and residual connections. This design 

enables multi-scale feature extraction while addressing the 

vanishing gradient problem in deep networks, providing 

accuracy, stability, and depth. InceptionResNetV2 has 

demonstrated superior performance in medical imaging tasks 

such as cancer histopathology and retinal disease detection, 

where identifying subtle features is critical (Szegedy et al., 

2017). While these CNN architectures have shown promise in 

various medical imaging domains, there remains a lack of 

comparative investigations focusing specifically on AlexNet, 

MobileNetV2, and InceptionResNetV2 for sickle cell disease 

prediction. Most existing works employ only one deep learning 

model or discuss blood disease detection in general without 

emphasizing SCD, and very few studies address computational 

efficiency alongside predictive accuracy, an essential factor in 

low-resource regions where SCD is most prevalent (Adegun & 

Viriri, 2021; Das et al., 2022). 

This research aims to fill the existing gaps in knowledge by 

comparing these three architectures in a systematic manner 

across various performance metrics, such as accuracy, 

precision, recall, F1-score, and computational efficiency. Using 

medical imaging datasets of red blood cells, the goal of the 

study is to find out which model is the best for classification, 

and further to identify the model that would be the most 

convenient for clinical use. This study, as a result, makes the 

healthcare' gap between the algorithmic and the practical 

implementation less wide by providing such a comparative 

analysis. 

 

3. METHODOLOGY  

The methodological framework of this study is designed to 

provide a comprehensive comparison of three prominent CNN 

architectures, AlexNet, MobileNetV2, and InceptionResNetV2, 

for sickle cell disease (SCD) prediction using medical imaging. 

The process involves four major stages: dataset acquisition, 

image preprocessing, model selection and training, and 

evaluation using performance metrics. Each step has been 

carefully structured to ensure reproducibility and fairness in 

model comparison. 

 

3.1 Dataset Acquisition  

 Images used in this study were obtained from the dataset 

created at the Institute for Advanced Medical Research and 

Training (IAMRAT), University of Ibadan, Nigeria. Original 

blood smear images were captured using a brightfield 

microscope with a 100X/1.4NA objective lens, motorized x-y 

stage, and colour camera. To enhance visibility, z-stacks were 

merged into a single plane using a wavelet-based Extended 

Depth of Field (EDoF) algorithm (Olugbara et al., 2020). 

Haemoglobin electrophoresis confirmed clinical ground truth, 

with diagnostic labels provided in sickle_slides_new_march.txt. 

Ethical approval was granted under UI/EC/10/0130 and 

UI/EC/19/0110. The specimens reflect sickle cell morphology 

also observed in Chhattisgarh, India (Hassan, 2024). 

Representative microscopic blood smear images from the 

dataset are shown in Figure 1, illustrating the quality and 

morphological characteristics of the samples used for this study. 
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              a. Sickle Cell                  b. Normal Blood Cell 

 Fig. 1. Raw full-field microscopic images of red blood cells captured at 100× magnification using a brightfield microscope. Microscopic images 

showing two categories of red blood cells: (a) sickle-shaped cells with elongated morphology, and (b) normal biconcave red blood cells. 

 

3.2 Image Preprocessing 

Due to variations in microscopic imaging conditions, 

preprocessing was essential to ensure image consistency and 

enhance model performance. In this study, all blood smear 

images were resized to 224 × 224 pixels to match the input 

requirements of standard pretrained CNN architectures. 

Normalization was then applied by scaling pixel intensity 

values to the range [0,1], facilitating stable gradient updates 

during training. To preserve the morphological characteristics 

of red blood cells while minimizing artefacts, a median filter 

was employed for noise reduction. Data augmentation 

techniques, including random rotation (±20°), horizontal and 

vertical flipping, zooming, and contrast adjustment, were used 

to enlarge the dataset and improve the model’s generalization. 

These transformations strengthened the system’s ability to 

handle variability in image acquisition. Comparable 

preprocessing strategies have been widely adopted in medical 

image analysis, as shown by Das et al. (2022), where resizing, 

normalization, and augmentation significantly improved CNN 

accuracy in detecting sickle-shaped cells. 

 

3.3 Model Selection 

Choosing the deep learning designs is crucial in predicting SCD 

from blood smear pictures. To this end, the paper compares 

three different convolutional neural network (CNN) 

architectures, i.e., AlexNet, MobileNetV2, and 

InceptionResNetV2, to find a good trade-off between accuracy, 

computational efficiency, and clinical usefulness. Basically, 

each of these models is a turning point in the history of deep 

learning, providing distinctly different design concepts that 

could be utilized for medical image processing. 

 

3.3.1 AlexNet 

AlexNet is a landmark architecture that significantly advanced 

deep learning, particularly in computer vision. It consists of five 

convolutional layers followed by three fully connected layers, 

employing rectified linear unit (ReLU) activations and max-

pooling to introduce non-linearity and spatial invariance 

(Krizhevsky et al., 2012). Although less deep than more recent 

networks, AlexNet pioneered the large-scale application of deep  

 

convolutional neural networks (CNNs) for image recognition, 

establishing a foundation for future models.  

In this research, AlexNet was adopted as a baseline 

architecture, enabling comparison of results with contemporary 

models such as MobileNetV2 and InceptionResNetV2 to 

evaluate performance improvements. 

The convolution operation in AlexNet can be shown 

mathematically as: 

 
Here (𝑌𝑖,𝑗,𝑘) Is the activation at the spatial position? (𝑖, 𝑗) in the 

𝑘𝑡ℎ Feature map, X is the input image, W is the convolutional 

filter. 𝑃 × 𝑄 And M is the number of input channels. The bias 

term is represented by 𝑏𝑘. This specimen expresses how the 

local receptive fields can get the higher-level features from the 

images of blood smears and how AlexNet can use these features 

to get the variations in the morphology that are caused by the 

different diseases in the blood.  

 

3.3.2 MobileNetV2  

 MobileNetV2, developed by Sandler et al. (2018), is a 

pioneering model that changes the fashion trend back to lighter 

and more efficient CNNs, in particular, those that are usable in 

mobile and embedded devices. The model introduces depth-

wise separable convolutions and inverted residuals, which, in 

combination, substantially reduce the number of parameters 

while the accuracy is close to the leading ones. Therefore, 

MobileNetV2 turns into the optimal choice for healthcare 

systems that experience a lack of computational resources, 

where the requirement for speed and efficiency is vital. The 

depth-wise separable convolution of this model may be 

depicted as: 

 

 
 

https://creativecommons.org/licenses/by/4.0/


Int. Jr. of Contemp. Res. in Multi. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025 
 

385 
© 2025 Abhishek Tiwari, Mayank Singh Parihar, Vanita Jain. This is an open-access article distributed under the terms of the Creative Commons Attribution 

4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/ 

 

Pointwise convolution was applied to the output of depth-wise 

convolution: 

 
Where X stands for the input, Y is the output of depth-wise 

convolution, where each channel was consumed independently, 

and Z is the merged representation after the pointwise 

convolution. Such a breakdown lowers the computation cost 

significantly from 𝑂(𝑃𝑄𝑀𝐾) to 𝑂(𝑃𝑄𝑀 +𝑀𝐾) Thus making 

MobileNetV2 the first choice for large-scale screening tasks. 

Chowdhury et al. (2020) demonstrated MobileNetV2’s 

effectiveness in medical imaging, achieving high accuracy in 

blood cell identification while reducing computational time, 

enabling both local and remote real-time diagnostic 

applications. 

 

3.3.3 InceptionResNetV2 

InceptionResNetV2 combines Inception modules with residual 

connections, enabling multi-scale feature learning and stable 

gradient flow, achieving high accuracy and robustness, making 

it effective for complex medical imaging tasks (Szegedy et al., 

2017). 

One way to express the residual connection in 

InceptionResNetV2 is through mathematical representation: 

 

𝒚 = 𝑭(𝒙, {𝑾𝒊}) + 𝒙 

 

InceptionResNetV2 combines nonlinear operations. 𝐹(𝑥, {𝑊𝑖}) 
With residual connections, ensuring efficient gradient flow and 

stable convergence. Studies, such as Bukhari et al. (2020), 

confirm its superior performance in medical imaging, 

highlighting its capability to capture subtle morphological 

variations, including precise detection of sickle-shaped red 

blood cells. 

 

3.4 Experimental Setup - All three models were initialized 

with weights pretrained on the ImageNet dataset and fine-tuned 

on the Sickle Cell Disease (SCD) dataset, applying transfer  

 

learning to adapt general image features for red blood cell 

classification (Pan & Yang, 2010). To maintain fairness, the  

The Same training setup was applied across models, using the 

Adam optimizer with a learning rate of 0.0001 (Kingma & Ba, 

2015),  

A batch size of 32, binary cross-entropy loss for two-class 

classification (Goodfellow, Bengio, & Courville, 2016), and 50 

training epochs with early stopping to reduce overfitting. 

Experiments were conducted in a Jupyter Notebook.  

Environment on an Intel(R) Core i5-10300H CPU @ 2.50GHz, 

8 GB RAM (7.87 GB usable), and a 4 GB NVIDIA GPU. For 

AlexNet, inputs were resized to 227×227 pixels with three RGB 

channels, consistent with its original design (Krizhevsky et al., 

2012) and widely used in biomedical classification tasks 

(Anwar et al., 2018). InceptionResNetV2 used 299×299 pixels, 

as specified by Szegedy et al. (2017), suitable for hierarchical 

feature extraction and adopted in medical image studies such as 

cancer detection (Gao et al., 2020). MobileNetV2 employed 

224×224 pixels, aligning with its lightweight efficiency 

(Sandler et al., 2018), validated in biomedical research (Howard 

et al., 2017; Montalbo, 2021). This preprocessing ensured 

compatibility and fairness in comparative evaluation. 

 

3.5 Evaluation Metrics 

 To evaluate the predictive performance of AlexNet, 

MobileNetV2, and InceptionResNetV2, standard metrics were 

employed. Accuracy measured overall correctness, while 

Precision assessed correctly identified sickled cells among 

positive predictions. Recall quantified correctly detected actual 

sickled cells, and the F1-score, the harmonic mean of Precision 

and Recall, offered a balanced evaluation. Collectively, these 

metrics ensured a comprehensive assessment beyond simple 

accuracy. 

 

Table 1: Hyperparameter Configuration of the Models 

Comparison of training hyperparameters used for AlexNet, 

MobileNetV2, and InceptionResNetV2, including input size, 

optimizer, loss function, batch size, epochs, and regularization 

details. 

Parameter AlexNet MobileNetV2 InceptionResNetV2 

Input Size 227 × 227 × 3 224 × 224 × 3 299 × 299 × 3 

Optimizer Adam (lr = 1e-5) Adam (default lr = 0.001) (likely) Adam (lr = 0.0001)  
Loss Function categorical_crossentropy categorical_crossentropy binary_crossentropy  

Batch Size 32 32 32 (standard in your code)  
Epochs (Max) 30–50 (EarlyStopping used) 100 (EarlyStopping used) 20 (EarlyStopping used)  

Callbacks EarlyStopping (patience=5), educeLROnPlateau EarlyStopping (patience=3) EarlyStopping (patience=3) 

Regularization L2 (0.0001), Dropout (0.5)  Dropout (default layers in MobileNetV2) BatchNorm + Dropout (built-in)  
Augmentation Rotation, Zoom (0.3), Flip, Brightness Rotation, Flip, Zoom Resizing + Normalization  

Trainable Params ~4.54 M ~2.2 M (MobileNetV2 lightweight) ~55 M (InceptionResNetV2 very deep)  
Validation Split 25% 20% (from flow_from_directory split) 20% (defined in your code)  

 

a. lr – Learning rate used during model optimization. b. Epoch 

– A complete training cycle over the entire dataset. c. Dropout 

and regularization techniques were used to prevent overfitting. 

d. Validation Split – The percentage of data reserved for model 

validation during training. 

Table 2 presents the hyperparameter configuration of AlexNet,  
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MobileNetV2, and InceptionResNetV2. While AlexNet 

required a larger input size (227×227), consistent with its  

original design, MobileNetV2 and InceptionResNetV2 used 

224×224 and 299×299, respectively. The Adam optimizer with 

tuned learning rates ensured fair comparison across models. 

These settings provided a standardized experimental 

framework. 

 

4. RESULTS AND DISCUSSION 

The comparative evaluation of AlexNet, InceptionResNetV2, 

and MobileNetV2 revealed significant performance differences 

across the models (Figures 2–4). AlexNet achieved a test 

accuracy of 76.26% but showed poor generalization, as 

reflected in the divergence between training and validation  

curves. While the training accuracy remained relatively stable, 

the validation accuracy dropped after the third epoch,  

accompanied by a sharp rise in validation loss, indicating 

 overfitting. 

In contrast, MobileNetV2 demonstrated a marked improvement, 

achieving 93% accuracy with consistent training and validation 

performance. The loss curves confirmed efficient convergence, 

with validation loss stabilizing after the initial epochs. This 

highlights MobileNetV2’s strength as a lightweight yet reliable 

architecture for medical image classification. 

 

  

Fig. 2. Training and validation performance curves of the InceptionResNetV2 model showing loss and accuracy trends across epochs. 

 

a. Loss – Error metric representing deviation between 

predictions and true labels. 

 

b. Accuracy – Percentage of correctly classified samples. 

     Fig. 3. Training and validation curves of the MobileNetV2 model demonstrating accuracy, stability, and convergence performance. 

a. Validation curve indicates the stability of the training process 
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Fig. 4. Training and validation accuracy and loss curves of the AlexNet model indicating overfitting and poor generalization trends. 

 

a. Overfitting is reflected by divergence between training and 

validation loss.  

The best results were obtained with InceptionResNetV2, 

which reached 94% accuracy. Both training and validation 

accuracy curves showed steady improvement across epochs, 

and the loss values declined consistently, suggesting better 

learning stability and generalization compared to AlexNet 

and MobileNetV2. 

Figures (5-7) represent confusion matrices of AlexNet. 

Misclassified many normal samples, indicating weaker 

generalization. MobileNetV2 improved balance with fewer 

misclassifications, while InceptionResNetV2 delivered the 

most.  

Consistent predictions. Overall, deeper architectures enhanced 

reliability and accuracy, highlighting their effectiveness for 

sickle cell detection compared to AlexNet. 

 

 
 

Fig. 5. Confusion matrix for AlexNet showing classification outcomes for 

normal and sickle cell classes 

 

a.  Higher false negatives indicate weaker generalization capability. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Confusion matrix illustrating InceptionResNetV2’s superior 

classification balance and minimal misclassification rate. 

 

a. Balanced precision and recall demonstrate strong robustness across both 

classes. 
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Fig. 7. Confusion matrix of MobileNetV2 showing reliable classification with few misclassified samples. 

 

a. Indicates effective feature extraction with high class-wise 

consistency. 

 

Table 2 presents the Comparison between MobileNetV2, 

InceptionResNetV2, and AlexNet Models' performance. The 

comparative analysis of AlexNet, MobileNetV2, and 

InceptionResNetV2 highlights the progressive improvement in 

detecting sickle cell and normal samples. AlexNet achieved an 

overall testing accuracy of 76%, with relatively high recall for 

sickle cell cases (97%) but poor recall for normal samples.  

 

(54%), indicating a strong bias towards identifying abnormal 

cells while misclassifying many normal instances. It's low F1- 

Scores for both classes (81% for sickle cell, 69% for normal) 

further confirm weak generalization. 

 

Table 2. Comparison Between Three Models 

Performance comparison of AlexNet, MobileNetV2, and 

InceptionResNetV2 on the test dataset based on accuracy, 

precision, recall, and F1-score. 

 

 

Pre-Trained Model 
Sickle Cell 

F1- Score 

Sickle Cell 

Recall 

Sickle Cell 

Precision 

Normal F1-

Score 

Normal 

Recall 

Normal 

Precision 

Testing 

Accuracy 

MobileNetV2 93% 96% 90% 92% 89% 96% 93% 

InceptionResNetV2 94% 95% 93% 94% 93% 95% 94% 

AlexNet 81% 97% 69% 69% 54% 94% 76% 

a Accuracy – The percentage of correctly predicted samples. b Precision – The ratio of true positive predictions to all predicted positives. c Recall – The ratio of 

correctly identified positive samples to all actual positives. d F1-score – The harmonic mean of precision and recall. 

 

MobileNetV2 improved performance considerably, achieving 

93% accuracy with balanced results across both classes. It 

attained 93% F1-score for sickle cell detection and 92% for 

normal cells, with recall rates of 96% and 89%, respectively. 

This demonstrates its capability as a lightweight yet robust 

architecture, offering consistent precision and recall across 

categories. 

InceptionResNetV2 outperformed both models, reaching 94% 

testing accuracy with nearly uniform precision, recall, and F1-

scores around 93–95% for both classes. This balanced 

performance indicates superior generalization and stability, 

making it highly suitable for clinical applications where 

misclassification of either class can have critical consequences. 

 

4. CONCLUSION 

This research involves the comparison of three deep learning 

architectures, AlexNet, MobileNetV2, and InceptionResNetV2, 

for the automated detection of sickle cell disease (SCD) from 

blood smear images. The results show that AlexNet was able to 

classify the images correctly with a moderate accuracy of 76%, 

but was unable to generalize well, especially in the case of 

differentiating normal red blood cells. In contrast to AlexNet, 

both MobileNetV2 and InceptionResNetV2 performed better to 

a great extent, resulting in the correctness of their classifications 

at 92.7% and 94.1% respectively. In fact, the precision, recall, 

and F1 scores achieved by both models were at the same level 

for all the classes, which shows that they can be trusted in 

diagnostic applications. 

The results demonstrate that deeper and more sophisticated 

convolutional architectures, particularly InceptionResNetV2, 

are more capable of dealing with complicated medical imaging 

tasks like the detection of SCD. AlexNet experienced 

difficulties with class imbalance and generalization, and the 

excellent performance of MobileNetV2 and InceptionResNetV2 
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is a testament to the fact that modern architectures play a 

crucial role in diagnostic accuracy and clinical reliability. In 

addition, the invariability of InceptionResNetV2's class-wise 

performance metrics at a high level is an indication of its 

potential use in computer-aided diagnostic (CAD) systems. 

In the next study, it would be beneficial to collect more data 

that covers different samples from various medical centers so as 

to enhance the generalization of the model and its applicability 

in the clinical setting. Also, the adoption of explainable AI 

(XAI) approaches would help in clarifying and thus gaining the 

trust of doctors by giving them a visual representation of the 

decision regions on the images. Furthermore, the optimization 

of lightweight models like MobileNetV2 for mobile or edge 

deployment can facilitate point-of-care screening in deprived 

areas. Last but not least, investigating the potential of hybrid 

frameworks that integrate deep learning features with clinical 

and laboratory data to not only enhance diagnostic precision but 

also to be compatible with real-world healthcare workflows is 

an exciting avenue of research. 
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