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1. INTRODUCTION

The combustion of fossil fuels is responsible for more than 75%
of greenhouse gas emissions worldwide, leading to global
warming and unstable climate conditions. Renewable like solar,
wind, hydro and geothermal produce near-zero emissions,
providing the clearest path to meeting Paris agreement goals:
net-zero by 2050. Solar power is among the most plentiful and
renewable energy resources on our planet. It originates from the
sun’s radiation, which can be captured and utilized through
different technologies, including photovoltaic cells, solar
thermal devices, and photogalvanic systems. Rising worldwide
demand for sustainable energy has accelerated progress in solar
technologies, positioning them as a vital tool in lowering
greenhouse gas emissions and addressing climate change. Solar
energy is not only environmentally friendly but also offers
long-term economic benefits due to decreasing costs of
installation and maintenance. It plays a crucial role in
diversifying energy portfolios and enhancing energy security
for both developed and developing countries.!'! Solar energy is
the energy we get from the sun in the form of sunlight and heat.
It is one of the most abundant and sustainable sources of energy
available on Earth. Every day, the sun emits vast amounts of
energy much more than we currently use globally. By
harnessing this energy using various technologies, we can
generate electricity, heat water and power homes, businesses
and even vehicles. In a photogalvanic cell, light is absorbed by
a photosensitive dye present in the electrolyte. When the dye
molecules absorb light, they become excited and donate
electrons to an electron acceptor. This process initiates a redox
cycle that generates a potential difference between two
electrodes, known as the photogalvanic effect, which drives the
flow of electric current. A photogalvanic cell is an important
device for converting solar energy into electricity through this
mechanism [2]. The effect was first noticed in the equilibrium
system of ferrous—ferric and iodine—iodide, but it was later
studied more extensively in the Thionine—Fe system [3-6].
Thionine has also been combined with poly (N-
methylolacrylamide) to form a polymer—dye complex.
Depending on the ratio of polymer to dye, the absorption
spectrum shows a red shift compared to that of free thionine.
The efficiency and potential of photogalvanic cells are strongly
influenced by this polymer—dye ratio [7]. The photogalvanic
effect has been examined using the Methylene blue-EDTA-
Sodium lauryl sulphate system, where a photocurrent of 190 pA
and a photopotential of 654 mV were recorded [8]. In another
study, surfactants such as Sodium lauryl sulphate, Tetradecyl
trimethyl ammonium bromide, and Brij-35 were incorporated
into a photogalvanic cell employing Azur A as the
photosensitizer and glucose as the reductant for solar energy
conversion and storage [9]. A dye-sensitized system with
Toluidine blue as the photosensitizer, glucose as the reductant,
and Tergitol-7 as the surfactant produced a photocurrent of 70
pA and a photopotential of 315 mV [10]. Similarly, the CTAB—
glucose—Toluidine blue configuration yielded a photocurrent of
35 pA along with a photopotential of 175 mV. The conversion
efficiency, maximum power and storage time were found to be

0.0578%, 6.26 uW and 6 minutes respectively [11]. In another
investigation, a photogalvanic cell comprising EDTA with a
mixed photosensitizer system of methylene blue and toluidine
blue produced a photopotential of 742.0 mV and a photocurrent
of 110.0 pA. This system demonstrated a conversion efficiency
of 0.5398% with a maximum power output of 81.62 uW, and it
was capable of operating for 34.0 minutes in the absence of
light [12]. Further, Gangotri and Lal examined the
photogalvanic effect in a cell containing methylene blue and
Azur B as photosensitizers. Their study reported a conversion
efficiency of 0.1165% and a maximum power output of 51.24
uW at the power point [13]. The photogalvanic effect was
investigated in a cell using ascorbic acid as the reductant and
eosin as the photosensitizer, where the conversion efficiency,
maximum power, and storage capacity were reported as
0.4474%, 46.5 pW, and 36.0 minutes, respectively [14].
Another study explored a system containing nitrilotriacetic acid
with Azur B, along with different surfactants—sodium lauryl
sulphate, cetyl pyridinium chloride, and Tween 80—for solar
energy conversion. The conversion efficiencies observed for the
anionic, cationic, and nonionic surfactants above their critical
micelle concentrations were 0.4053%, 0.1386%, and 0.2177%,
with storage capacities of 105, 31, and 74 minutes, respectively
[15]. In addition, a dye-sensitized photogalvanic cell employing
EDTA with methylene blue and thionine showed a conversion
efficiency of 0.43%, delivering a maximum power output of
67.68 W, and sustaining operation for 30 minutes in the dark
[16]. A dye-sensitized photogalvanic cell utilizing the
dioctylsulfosuccinate—mannitol-safranine system has been
employed for solar energy conversion into electricity. Analysis
of its current—voltage characteristics revealed a conversion
efficiency of 0.7603%, a fill factor of 0.50, and a storage
capacity of 40.0 minutes [17]. In another study, the
photogalvanic effect was examined in a Tween-80—EDTA-
Safranine-O system. This configuration exhibited a conversion
efficiency of 0.9769%, a fill factor of 0.34, and a maximum
power output of 235.50 uW. The initial current generation rate
was 80.0 pA min™', and the cell retained functionality for 60.0
minutes under dark conditions [18]. Gangotri and Bhimwal
investigated a photogalvanic cell employing eosin as the
photosensitizer and arabinose as the reductant for solar energy
conversion. The system exhibited a conversion efficiency of
0.7026% and a fill factor of 0.2856 at the power point. After
140 minutes of irradiation, the cell was capable of operating for
85.0 minutes in the absence of light [19]. In another study,
Gangotri and Indora utilized a mixed reductant system
consisting of dextrose and EDTA, along with Azur A as the
photosensitizer, to develop a photogalvanic cell aimed at
reducing construction costs for commercial feasibility. This
configuration yielded a maximum power output of 10.87 uW, a
conversion efficiency of 0.1045%, and a fill factor of 0.1942
[20]. The photogalvanic behavior of Brilliant cresyl blue with
fructose in an alkaline medium has been investigated to
improve the efficiency and storage capacity of solar energy
conversion. The system demonstrated a maximum potential of
1115 mV, a maximum photocurrent of 785 pA, a short-circuit
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current of 590 pA, a power output of 183.3 uW at the power
point, and an overall conversion efficiency of 1.9586% [21]. In
another study, a photogalvanic cell based on the Safranine—
sodium lauryl sulphate—D-xylose system was explored to
enhance the electrical performance and output of the device. A
conversion efficiency of 0.68% and a fill factor of 0.32 were
recorded at the power point of the photogalvanic cell [22]. In
another investigation, Rhodamine B with fructose in an alkaline
medium was employed to improve the electrical performance of
the system. The measured parameters included a maximum
potential of 1071 mV, a maximum photocurrent of 1049 pA, a
short-circuit current of 972 puA, and a power output of 244.02
uW at the power point. This configuration achieved a
conversion efficiency of 7.58% and demonstrated a storage
capacity of 3.6 hours [23]. A photogalvanic cell employing
Tergitol-7, EDTA, and Azur B for solar energy conversion and
storage produced a photopotential of 778.0 mV and a
photocurrent of 45.0 pA, corresponding to a conversion
efficiency of 0.14% and a fill factor of 0.3169. The cell-
maintained performance for 40.0 minutes in the absence of light
[24]. In another study, the photogalvanic response of the
xylidine ponceau—-Tween 60-ascorbic acid system was
examined, where the device generated a maximum power
output of 68.77 uW under optimal conditions. Conversion
efficiency in this case was calculated from the observed
photopotential and photocurrent at the power point.
Additionally, Nile Blue, in combination with arabinose, was
utilized as a photosensitizer—reductant pair in a photogalvanic
cell. This system exhibited a conversion efficiency of 0.6095%
with a fill factor of 0.2566, demonstrating suitability for
enhanced energy conversion and storage [25-26]. The
photogalvanic effect was examined in a cell containing Tween-
80 as a non-ionic surfactant, Toluidine Blue as the
photosensitizer, and EDTA as the reductant. The system
produced a photopotential of 430 mV, a photocurrent of 50 pA,
and a storage capacity of 60 minutes. Conversion efficiency and
fill factor were also evaluated for this configuration [27]. In a
separate investigation, Yadav and Sharma [28] reported the
photogalvanic activity of a cell employing Azur C with
nitrilotriacetic acid in alkaline medium. The device delivered a
maximum photopotential of 347 mV, a photocurrent of 70 pA,
and a power output of 19.84 uW. The corresponding conversion
efficiency was 0.19%, and the storage capacity in dark
conditions was 38 minutes. Yadav and co-workers have
reported a series of studies demonstrating effective electrical
performance of photogalvanic cells employing different dyes as
photosensitizers. Their research also examined the role of

surfactants in enhancing cell efficiency and investigated
innovative photogalvanic cell configurations, with particular
emphasis on electrical characteristics, solar energy conversion,
and storage capabilities [29-32].  Although various
photosensitizers, surfactants, and reductants have been
employed in photogalvanic cells for solar energy conversion,
limited attention has been given to the use of natural dye
curcumin in combination with fructose and Tween-80 as active
materials to enhance electrical output and overall cell
performance. Therefore, the present study aims to investigate
this system to achieve improved efficiency and explore the
potential for commercial viability of photogalvanic cells.

2. RESULT AND DISCUSSION

(a) Effect of variation of curcumin, fructose and
tween 80 concentration:

The effect of varying the concentrations of Curcumin,
fructose, and Tween-80 on the photogalvanic cell performance
is summarized in Table 1. The influence of dye concentration
was investigated using Curcumin solutions at different
molarities. It was observed that the photopotential,
photocurrent, and power output increased with rising Curcumin
concentration, reaching maximum values at 2.2 x 1075 M.
Beyond this concentration, a decline in electrical output was
noted. At very low dye concentrations, the limited number of
Curcumin molecules was insufficient to absorb most of the
incident light, resulting in lower electrical output. Conversely,
at higher concentrations, excessive light absorption by
molecules farther from the electrode reduced the light intensity
reaching molecules near the electrode, thereby decreasing the
cell’s electrical output. Similarly, increasing the concentration
of fructose led to enhanced photopotential, current, and power,
attaining maximum values of 825.0 mV, 755.0 pA, and 622.88
uW at 1.4 x 107 M. Beyond this point, the electrical output
decreased. At lower concentrations, insufficient fructose
molecules were available to efficiently donate electrons to the
Curcumin dye. At higher concentrations, the mobility of dye
molecules was hindered, limiting their ability to reach the
electrode in the desired time frame, which further reduced
electrical output. The electrical performance of the cell also
improved with increasing Tween-80 concentration, reaching a
maximum (825.0 mV, 755.0 pA, and 622.88 pW) at 1.8 x 1073
M. Further increases in surfactant concentration acted as a
barrier, and excessive Tween-80 led to photobleaching of some
dye molecules, resulting in a decrease in the electrical output.
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Table 1: Effect of variation of Curcumin, fructose, and tween 80 system concentrations

Light Intensity = 10.4 mW cm, Temperature = 303 K, pH = 11.70

[Ci::l:;ﬁ:sllool.lssM Photopotential (mV) Photocurrent (nA) Power (UW)
1.8 678.0 606.0 410.86
2.0 722.0 689.0 497.45
2.2 825.0 755.0 622.87
2.4 772.0 687.0 530.36
2.6 661.0 584.0 386.02

[Fructose] x 10 M
1.0 659.0 557.0 367.06
1.2 767.0 663.0 508.52
1.4 825.0 755.0 622.88
1.6 774.0 651.0 503.87
1.8 673.0 547.0 368.13
[Tween 80] x 10° M
1.4 634.0 547.0 346.80
1.6 757.0 662.0 501.13
1.8 825.0 755.0 622.88
2.0 767.0 757.0 503.92
2.2 631.0 533.0 336.32

(b) Effect of variation of pH

The photogalvanic cell containing the Curcumin—
fructose—Tween 80 system was found to be highly sensitive to
the pH of the solution. It was observed that increasing the pH
led to an enhancement in electrical output. Maximum values of
photopotential, photocurrent, and power—825.0 mV, 755.0 pA,
and 622.88 pW, respectively—were achieved at pH 11.70.
Further increases in pH resulted in a decline in electrical
performance. The optimum output at this specific pH is likely
due to the improved availability of fructose molecules in their
electron-donating form. The effect of pH on the system is
illustrated in Figure 1.
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Fig. 1: Effect of pH on electrical parameters

(c) Impact of diffusion length

The effect of diffusion length—the distance between
the two electrodes—on the current parameters of the
photogalvanic cell (imax, icq, and the initial rate of photocurrent
generation) was investigated using H-shaped glass cells of

varying dimensions. During the initial minutes of illumination,
a sharp rise in photocurrent was observed. With increasing
diffusion length, the maximum photocurrent (ima.x) Was expected
to increase due to the extended path for the photochemical
reaction; however, this trend was not observed experimentally.
In contrast, the equilibrium photocurrent (i.q) showed a linear
decrease with increasing diffusion length. These observations
suggest that the primary electroactive species are the leuco or
semi-reduced forms of the dye (photosensitizer) present in the
illuminated and dark compartments, respectively. Ascorbic acid
and its oxidation products serve mainly as electron carriers
within the system. The experimental data supporting these
findings are presented in Table 2.

Table 2: Effect of Diffusion Length

Diffusion Length DL (mm) | 40.00 | 45.00 50.00 55.00 60.00

Max™ Photocurrentin pA | 786.0 | 791.0 798.0 805.0 811.0

E““"“’““;;‘Eg"“’c“"e“t 7660 | 762.0 | 7550 | 7440 | 739.0

Rate of initial Generation
of 20.68 | 20.82 21.00 21.18 21.34
Current in pA min’!

(c) Effect of electrode area

By using Pt-electrodes with varying surface areas, it was
possible to conduct more extensive investigations on the effect
of electrode area on cell parameters. Elevations in imsx were
shown to be correlated with larger electrode areas, but iq was
found to be mostly unaffected by this variation (in fact, it was
affected in the opposite way). The effect of changing the
electrode area on the imax and icq illustrated in figure 2.
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(d) Current-Voltage (i-V) properties of the cell

The short-circuit current (Isc = 755 pA) and open-circuit
voltage (Voc = 1009 mV) of the photogalvanic cell were
measured using a microammeter under closed-circuit conditions
and a digital pH meter under open-circuit conditions,
respectively. Intermediate values of photocurrent and
photopotential were obtained by applying an external load
through a carbon potentiometer (log 470 K) connected to a
multimeter. The current—voltage (i—V) characteristics of the
Curcumin—fructose-Tween 80 system are presented in Figure 3.

The i—V curve was found to deviate from the typical rectangular
profile. The point of maximum power output, referred to as the
power point (pp), was identified at a photocurrent (ipp) of 220
PA and a corresponding potential (vpp) of 552 mV. From the i—
V curve, the fill factor was calculated to be 0.1594 using the
relation:
V. xi

Fill factor(7) = 22—

VOC x ZSC
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Fig. 3: Current voltage (i-V) curve of the cell
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(e) Cell performance and conversion efficiency

The performance of the photogalvanic cell was
evaluated by applying an external load—essential for obtaining
current at the power point—after switching off the light source
once the potential had stabilized. The performance was
quantified in terms of ti,», defined as the time required for the
power output at the power point to fall to half of its initial value
under dark conditions. The Curcumin—fructose—Tween 80

system demonstrated a storage capacity of approximately two
hours in the absence of illumination. Using the photocurrent
and photopotential values at the power point, along with the
incident light power, the overall conversion efficiency of the
cell was calculated as 1.16% according to the standard relation.
The variation of power output with time is depicted in the time—
power curve (Figure 4).

V. xi
—m T 100%
Ax10.4mWem

Conversion efficiency =
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3. Mechanism

When the dye molecules are photo excited in the presence of
the electron donor ascorbic acid, they are rapidly reduced to
their colorless form. In this reduced state, the dye acts as a
strong reducing agent, capable of transferring electrons to other

species before being reconverted to its oxidized state. Based on
previous studies, a tentative reaction mechanism for the
operation of the photogalvanic cell is proposed and illustrated
in Figure 5.

Current

Dye

Pt
Electrode

Fig. 5: Scheme of the mechanism

SCE = Saturated calomel electrode, D = Dye (Photosensitizer)
R = Reductant, D = Semi & Leuco form

4. MATERIALS AND METHODS

Tween 80, curcumin, fructose (Figure 7a—c), and NaOH
(Loba Chemie) were employed in the present study. Stock
solutions of curcumin, fructose, Tween 80 and NaOH (1 N)
were prepared in double-distilled water (conductivity: 3.5 x
1075 Sm™) and stored in colored containers to prevent exposure
to sunlight. A mixture of curcumin, fructose, Tween 80 and
NaOH was transferred into an H-shaped glass cell, the outer
walls of which were blackened with carbon paper to avoid
unwanted light exposure. A platinum foil electrode (1.0 x 1.0
cm?) was inserted into one compartment of the H-cell, while a
saturated calomel electrode (SCE) was placed in the opposite

limb. The Pt electrode functioned as the working electrode,
whereas the SCE served as the counter electrode. The system
was initially kept in the dark until a stable potential was
reached. Thereafter, the compartment containing the Pt
electrode was illuminated with a 200 W tungsten lamp
(Philips). To eliminate thermal effects, a water filter was
employed. The photopotential and photocurrent were measured
using a digital multimeter (HAOYUE DT830D). The i-V
characteristics of the photogalvanic cell were studied by
connecting an external load through a carbon potentiometer (log
470 K). The complete experimental setup of the photogalvanic
cell is shown in Figure 6.
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