Int. Jr. of Contemp. Res. in Mullti. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025

of
Contemporary Research

Multidisciplinary

Research Article

The Evolution of Programming Languages: From Assembly Language
to Modern High-Level Languages

Dr. Rajinder Kumar ', Charnajeet Kaur 2, Mr. Sonwinder Singh *
! Associate Professor,! Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, India
2 Assistant Professor, University College Dhilwan, Barnala, Punjab, India
3 Assistant Professor, Fateh Degree College, Maur -Road Rampura Phul, Bathinda, Punjab, India

Corresponding Author: *Dr Rajinder Kumar DOI: https://doi.org/10.5281/zenodo. 17481620
Abstract Manuscript Information
= ISSN No: 2583-7397

Programming languages have developed from the earliest days of computing. The move * Received: 01-08-2025
from low-level assembly language to higher-level languages such as Python, Java, and C++ " Accepted: 29-09-2025
has greatly affected how we write our software, making it more efficient, easier to read, and : ffcl)ll{;liei(sio-zl(gszoj;l-477
maintain for programmers. This paper explores the history of programming languages, with ©2025 :All Rishts R d

. , ghts Reserve
particular emphasis on key goals achieved in that development, which help clarify today's , Plagiarism Checked: Yes
languages, including Fortran, Lisp, Cobol, the creation of C, object-oriented programming, u peer Review Process: Yes

and the continued evolution of our most modern languages. The move isn’t just a technical

change, but one that reflects how developers now design software to be more accessible and How to Cite this Article

able to create the otherwise sophisticated systems running today’s digital world. Kumar R, Kaur C, Singh S. The
evolution of programming languages:
from assembly language to modern

high-level languages. Int J Contemp
Res Multidiscip. 2025;4(5):471-477.

Access thls Artlcle Online

www.multlamCIGSJournal.com

KEYWORDS: Programming Languages, Assembly Language, High-Level Languages, C Language, Object-Oriented
Programming (OOP), Scripting Languages, Software Development, Modern Programming Languages

INTRODUCTION to the advent of high-level languages, which abstracted
The history of programming languages has been very influential hardware implementation details away and made programming
in how current software development practices have developed. accessible for anyone remotely interested in making it a career,
From the very beginnings of computing, when coders wrote language design has changed how we program for good. This
instructions that directly manipulated machine code, all the way article will cover the history of programming languages, from

471 © 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0001-4129-0388
https://doi.org/10.5281/zenodo.17481620
https://orcid.org/0009-0001-4129-0388

Int. Jr. of Contemp. Res. in Multi.

PEER-REVIEWED JOURNAL

Volume 4 Issue 5 [Sep- Oct] Year 2025

assembly language up to high-level languages like Python,
Java, and C++, which have powerful constructs that make it
easier for developers. The evolution in programming languages
mirrors not only advances in technology and hardware, but also
trends in software engineering methodologies, programming
paradigms, and the requirements of a rapidly changing
computing landscape. When computers were first programmed,
the only language one could use to control a computer was
machine code — binary instructions that a computer could
execute immediately. This primitive programming approach
was very closely tied to specific hardware and required
sufficient expertise in the machine architecture from the user. It
was both time-consuming and prone to errors, so a new
programming language, such as assembly language, was
necessary. Assembly language was something of a step up from
machine code; it took human-readable mnemonics (e.g., ADD,
SUB, MOV) and represented each operation with a string of
bits. While it rendered programming slightly easier, assembly
language was still very hardware-oriented, and programmers
had to know the architecture of the machine in great detail.
High-level programming languages were invented in the 1950s
because writing machine code was so cumbersome and
difficult; people began to look for a more abstract way to
program computers. These languages (for example, Fortran,
COBOL, and Lisp) provided programmers with a way of
concentrating less on hardware issues and more on solving
problems. One of the earliest high-level languages developed
for scientific and engineering computations, Fortran (Formula
Translation) was established by IBM in the 1950s. This allowed
engineers and scientists to write advanced mathematical
routines without needing to interact with the hardware
underneath. Likewise, COBOL (Common Business-Oriented
Language), developed in 1959, was created for business-related
applications and was distinguished for being best suited to
manage a large volume of data processing. Lisp, which John
McCarthy developed in 1958, creates functional programming
and was a popular language used for artificial intelligence
projects because of its powerful symbolic computation ability.
Early high-level languages such as these represented a major
step forward in the evolution of programming, but there was
still no language that could provide both programmability and
high-level abstractions users are accustomed to today, and full
control over every piece of the system. It took the introduction
of C in the early 1970s by Dennis Ritchie at Bell Labs to
achieve this. C, which struck a decisive balance between
abstraction and control in programming. C permitted
programmers to generate efficient systems-level code, yet it
was more portable than assembly language. The development
of the UNIX operating system did, having been coded in just C.
This characteristic: the facility to apply programs in other
hardware with few changes (thanks C!), settled down for further
software transportability. C was also an inspiration for many
later languages, including C++, Java, and several scripting
languages. As the requirements on computation changed and
software systems became more sophisticated, new
programming paradigms were introduced, and object-oriented

programming (OOP) emerged. Keywords such as
encapsulation, inheritance, and polymorphism were introduced
from languages like C++ and Java, based on OOP. This led to a
style of application design in which software was made
reusable, modular, and maintainable. Early Sign in C++,
created by Bjarne Stroustrup in the 1980s, was an extension for
C that brought object-oriented capabilities (with it) while
retaining the low-level control. It made complex systems
possible that could be maintained and scaled with less effort by
developers. Java, introduced by Sun Microsystems in 1995, was
created with portability in mind and followed the OOP
paradigm, bringing along its “write once, run anywhere,” which
sounds as if (JVM). Java’s innovations in automatic memory
management using garbage collection also made it popular for
enterprise application development.

In the late 1990s and early 2000s, scripting languages such as
Python, JavaScript, and PHP took the concept of software
development to a new level. These languages are made simple,
short, and convenient for quick development, hence decreasing
the time it takes to write, deploy applications. Python (1989,
Guido van Rossum) was known for being easy and readable, so
it was simple enough that it would be great even for beginners.
Introduced to bring interactivity to web pages, JavaScript
quickly turned out to be the core of Web development: elements
that make up dynamic websites and applications. Since its
introduction in 1995 by Rasmus Lerdorf, PHP has been one of
the most popular server-side scripting languages used for web
development. The ever-changing world of programming
languages has also given way to the emergence of modern
languages such as Go, Rust, Swift, and Ruby, which were
developed based on specific software requirements. Go was
created by Google in 2007 with efficient, scalable, and
concurrent development across large-scale distributed systems
in mind. Rust, from Mozilla, was designed with a focus on
memory safety and concurrency for systems programming
without giving up performance. Developed by Apple, Swift is
the best way to write code for iOS and OS X — not just
powerful and easy to use, but also fast. Especially via its web
framework, Ruby on Rails, Ruby is an extraordinary agent of
change in the natural direction of all software's flow.

Computers evolve as computing continues to develop, the
languages that are going to be used for programming this
computer are definitely something you would need advanced
knowledge in artificial intelligence, quantum computing, and
security. If Al becomes part of programming languages, it
would become tools that help software developers write better
code, catch errors, and even improve performance. In the same
way, should quantum computing become a commercial reality,
new programming languages are likely to be invented to make
use of superior, novel quantum systems that work in markedly
different ways from ordinary computers.

2. LITERATURE REVIEW

The development of programming languages is widely studied
and recorded in the literature. Authors have discussed the
histories and evolution of significant languages and elaborated

a7 © 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi.

PEER-REVIEWED JOURNAL

Volume 4 Issue 5 [Sep- Oct] Year 2025

on how each software

technologies.

impacted modern engineering

2.1 Early Programming Languages: Assembly Language
and Machine Code

The first programming languages were machine language and
assembly language, closely connected to the hardware.
Although these languages were efficient, they were overly low-
level to bend around the more complicated problems. The early
computer programmers had to handle memory manually and
work with low-level abstractions, as reported in Tanenbaum
(2014) on the design of modern operating systems. Assembly
language provided mnemonics for machine instructions, but
writing and understanding it was only marginally easier than
directly making an equivalent (and correct) machine instruction,
or bypassing the issue altogether by taking a program compiled
in another language’s binary output as input; thus, the bulk of
its users were hardware engineers or computer architects.

2.2 High-Level Programming: Fortran, COBOL, and Lisp
The 1950s saw a revolution in programming, where the short
few instructions were redesigned with high-level programming
languages. In 1957, IBM developed Fortran, which helped
scientists and engineers easily and clearly express mathematical
statements and further the progression of scientific computing.
COBOL, invented in 1959, was a language predominantly for
business data processing and played an important role in the
business world: thanks to its ubiquity, it became possible for
businesses everywhere to integrate computers into their
processes. Lisp was designed by John McCarthy in 1958 for Al
research, and brought to the world recursive functions and
symbolic computation. These languages are the first real high-
level languages and remove some of the details of the machine
hardware in favour of simplifying programming.

2.3 The Creation of C

Another history-making event in the world of programming
happened when Dennis Ritchie created C at Bell Labs in the
70s. C was intended to provide the best of both worlds -- high-
level access and low-level machine control. As reported by
Kernighan and Ritchie (1978), the high portability and
efficiency of C were decisive in creating a new trend for system
programming, which played not an insignificant role in
boosting participation in the UNIX operating system. The
portability of C programs and variations of the language
became a driving force in other modern programming
languages.

2.4 Object-Oriented Programming: C++ and Java

Object-oriented programming (OOP) had its roots in the 1980s
and early 1990s, where data encapsulation, inheritance, and
polymorphism became extremely popular. C++, introduced by
Bjarne Stroustrup in 1979, extended C with object-oriented
programming features, which enabled developers to write more
modular and maintainable code. The language was an
intermediary between the system-level control of C and higher-

level abstractions that were necessary for big, complex
applications.

Java — created by Sun Microsystems in 1995, Java is a
platform-independent language, which means it is used to
follow the “write once, run anywhere” system. It became a
pervasive language for both web applications and enterprise
systems with automatic memory management and good error-
recovery properties that accelerated the development process.

2.5 The Growth
JavaScript, and PHP
The need for quick application delivery, however, during the
1990s and 2000s brought about the popularity of scripting
languages such as Python, Java Executor Script, JavaScript, and
PHP. Written by Guido van Rossum in 1989, Python was
designed with an emphasis on readability and simplicity—
qualities that would also make it extremely well-suited to rapid
prototyping and web development. JavaScript As Javascript
revolutionized web development, though allowing the addition
of interactivity to webpages, PHP was establishing itself as the
backend language for dynamic websites. These languages had
low barriers to entry for developer productivity with fast
development iteration cycles.

of Scripting Languages: Python,

2.6 Modern Trends in Programming Languages

Over the last couple of years, some new languages have popped
up, including but not limited to Go, Rust, Swift, and Ruby,
designed specifically for efficiently solving different problems
of modern software. Go is another popular language developed
at Google, best fit for high concurrency and system
programming with scalable computing support. Systems
programming has also seen a surge in Rust due to the focus on
memory safety. Swift, created by Apple, is the workhorse of
i0S development for its great performance and expressiveness.
Ruby Aesthetic and high-level design. Ruby is designed with
ease of use in mind, so web applications can be developed
quickly through its Ruby on Rails framework.

473 © 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Mullti. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025
Author(s) Year Title Focus Area Contribution
Early programmine and Discusses early machine and assembly
Tanenbaum, A. S. 2014 Modern Operating Systems ¥ prog & languages, and the importance of
system-level languages o .
abstraction in system programming.
Kernighan, B. W., & Ritchie, . Development of the C lntrodupes C hlghllghtlng 1S p 01'-tab111ty
D M 1978 The C Programming Language programming language and efficiency, and its pivotal role in system
T programming and UNIX development.
Discusses the creation of C++, object-
. Object-oriented oriented features like classes and
++ . . . S
Stroustrup, B. 1986 The C++ Programming Language programming and C++ inheritance, and their impact on large-scale
software.
Python: A Programming Python programmin Describes Python’s simplicity, readability,
Van Rossum, G. 1995 Language for Software Integration Y prog J and its use in integration and rapid
language L
and Development application development.
Focuses on Java's platform independence
Gosling, J., Joy, B., Steele, G., The Java™ Programming Object-oriented ("write once, run anywhere"), garbage
2005
& Bracha, G. Language programming and Java collection, and its role in enterprise
software.
Discusses early structured programming
Early structured
Wirth, N. 1976 Algol W and its Implementation programming and data language d’e veloprpenFs and the ALGO.L W
language’s contribution to programming
types
theory.
. . . . Describes LISP’s role in symbolic
McCarthy, J. 1960 LISP: A Prp gra mmmg.Language Lisp programming computation, recursion, and Al
for Artificial Intelligence language and Al
development.
Scrintine laneuaces and Introduces Tcl and Tk, used for GUI
Ousterhout, J. 1994 Tcl and the Tk Toolkit pung languag development and scripting in various
rapid development L
applications.
PHP: A Practical and Powerful PHP programming) Dlscusses PHP’s role in server—s_lde
Lerdorf, R. 2002 language and web scripting and web development, particularly
Tool for Web Development . L
development for dynamic web applications.
B The Structure of the "THE" Early programming Explores ear}y concepts in programming
Dijkstra, E. W. 1968 . . models and operating systems, particularly for operating system
Multiprogramming System : . .
systems design and multiprogramming.
. . L . Provides an overview of the key milestones
Isern, J., & Sanchez, D. 2011 Tﬁf\;(;lrl;trlrﬁ?l OtI:I:rigEZiL:\s/el H;(s)t(galrclilnliosrsge;ctg: 2;1 in the development of high-level
& & guag prog g languag programming languages and their evolution.
Pyihon proeramming and Explores Python’s development and its
Lutz, M. 2013 Learning Python y prog & widespread use in web development, data
software development . .
science, and automation.
Provides an introduction to C, focusing on
Bernstein, J. 1999 Introduction to Programming in C | C programming language its structure, syntax, and role in system
programming and software development.
LISP: A Programming Language Amﬁcw‘l mtelhgenge a1.1d Emphasizes LISP’s contribution to Al and
McCarthy, J. 1960 g . symbolic computation in .
for Artificial Intelligence Lisp its approach to symbol

474

© 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi.

PEER-REVIEWED JOURNAL

Volume 4 Issue 5 [Sep- Oct] Year 2025

3. Evolution of Programming Languages (Diagram)

Below is a diagram that summarizes the major milestones in the
evolution of programming languages from assembly language
to modern high-level languages:

Assembly Language
(Early machine-lLewvel
programming; mnemonics
for CPLD

il

High-Level Languasges
Fortran (1957) | COBOL.
(1959) | LISP (1955)
(Scientific/Math) |
(Business) | (AI Research)

il

The C Languase
(Swvstem Programming, UNIX)
(Created in 1972)

il

Object-Oriented
Programming (O0P)
C++ (1980s) & Java (A995)
(Classes, ITnheritance,
Polvmorphism)

il

Scripting Languages & Web
Development
Pvthon (A989), JavaScript
(1l995), PHP (1993=)
(Rapid Development, Web,
and Automation)

il

Modern Programming
Languages
Go (2Z2007), Rust (2Z2010),
Swift (2014), Ruby (2000)
(Concurrency, Memory
Safety, Mobile Dew)

il

Future Programming
Languages
(AI Integration, Quantum
Computing, Security)

Figure 1: The chart highlights the evolution in programming
languages that started with assembly language, the first form of
code that interacted directly with hardware. While assembly
language was convenient, it was easy to use and required a
comprehension of machine code. The next major benchmark
was so-called higher-level languages—Ilanguages like Fortran,
COBOL, and Lisp—that abstracted away from the machine
code (what a computer reads to carry out commands), making it

easier and more efficient to program. These languages were
designed for particular purposes — scientific computing,
business applications, and artificial intelligence.

After this, the C language was developed in the 1970s, striking
a balance between low-level and system portability. C was an
important language for the implementation of operating systems
(e.g., UNIX) and influenced many other languages that
followed. In languages such as C++ and Java, object-oriented
programming (OOP) was introduced, adding dimension to
programming. Object-oriented programming brought notions of
classes, inheritance, and polymorphism, which allow the
development of more modular and reusable code that is easier
to maintain in large and complex systems.

With the requirement of accelerated development, scripting
languages such as Python, JavaScript, and PHP took off. These
were languages that allowed for faster development cycles,
especially in the world of web development, and which made
programming more possible when it came to people who aren't
experts. In recent years, new programming languages such as
Go, Rust, Swift, and Ruby have been crafted to serve specific
purposes (e.g., efficiency, memory safety, concurrent
processing, and mobile development), and their number
increase as the languages serves different domains.

From the perspective of a vision, I suspect that the next trends
of programming languages may contribute to some
characteristics such as Artificial Intelligence, Quantum
Computing Enhanced Security, because in terms of these three
items, programming languages must evolve to fit new
technologies and software development challenges.

4. Early Programming Languages: Machine and Assembly
Language

In the early days of computers, programmers would work in
machine code. Machine code is the binary instructions specific
to a particular architecture. But machine code was both
inefficient and a source of endless programmer errors. This
resulted in the development of assembly language in the early
1950s, which represented machine instructions using mnemonic
codes. Assembly, though easier to read than machine code, was
still quite low-level and required a deep understanding of the
computer's hardware to program efficiently.

Key Milestones:

Assembly Language: The first level of abstraction in
programming, but it's still very close to hardware.

First Compilers: Early efforts toward building abstractions, but
they were dominated by assembly.

5. High-Level Programming: Fortran, COBOL, and Lisp
History High-level programming languages, such as FUTURE
BASIC or BASIC+, were developed between the 1950s and
1960s precisely to be more human-understandable than low-
level ones and less dependent on the particular hardware
(ported/translated code).

475 © 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi.

PEER-REVIEWED JOURNAL

Volume 4 Issue 5 [Sep- Oct] Year 2025

Fortran: The first high-level programming language,
developed by IBM in the 1950s. It was mostly used in scientific
and engineering applications and stressed how important
efficiency was for computations.

COBOL: Introduced in 1959 for business use, COBOL
(Common Business-Oriented Language) was aimed at being
user-friendly and easily accessible to non-programmers.

Lisp: Developed by John McCarthy in 1958, Lisp (which
stands for List Processing) was developed as a programming
language for artificial intelligence research, where its ability to
process symbolic computation and the use of non-volatile
storage made processes much easier.

These early high-level languages also introduced some
important concepts, such as data structures (e.g., arrays,
records, sets), and control structures (sequence,
alternative/conditional structure, repetition/loop). This marked a
much wider range of potential applications beyond machine
code or assembly language.

6. The Advent of C and System Programming

In the late 1960s and early 1970s, C emerged as a revolutionary
language. Developed by Dennis Ritchie at Bell Labs in 1972, C
combined the efficiency of assembly with the abstraction of
high-level languages. C allowed developers to write code that
was portable across different hardware platforms while still
providing low-level control over system resources.

C's Impact:
Portability: C-based code has been shown to recompile
without any changes on new hardware.

Birth of UNIX: The UNIX operating system was coded in C,
which proved the effectiveness and versatility of this language.
Impact on future languages: The structure of C has been an
influential source for many other programming languages after
it was developed; the most prominent among these include
C++, as well as Java and, more indirectly, Python.

7. Object-Oriented Programming: Emergence of C++ and
Java

In the 80s and 90s, object-oriented programming (OOP)
changed how we write software forever. In other words, OOP
emphasized modularity, re-usability, and abstraction -- three
aspects that facilitated the development of large-scale software /
complex systems.

C++: Invented in 1979 by Bjarne Stroustrup, C++ added
object-oriented concepts like classes and inheritance, along with
massive functionality to the already low-level programming
language of C.

Java: Sun Microsystems developed Java in 1995 with the
slogan, “write once and run anywhere”. Java’s garbage
collector, or automatic memory management, and solid

exception handling led it to become an ideal language for
developing large-scale applications.

C++ (Aer Jernigan) Given C++ and Java, molded much of the
way we think about software engineering today, complex and
reliable systems that could run on different types of hardware
suddenly became a reality.

8. Rebirth of the Cool: Python, JavaScript, and PHP Sisters
doing It for Themselves

The late 1990s and early 2000s also saw the development of
new scripting programming languages intended to be very
suited for writing (object-oriented) web applications.

Python: Created by Guido van Rossum in 1989, Python was
designed for readability and simplicity. The syntax of Python
itself (often touted as the "executable pseudocode") was at its
best when it came to quick prototyping and development in data
science, web development, or automation.

JavaScript: Initially conceived as a way of including
interactivity in webpages, it became the center of modern web
development. This versatility has led it to be used as a proper
programming language with the development of frameworks
such as Node. Js.

PHP: In 1993, Rasmus Lerdorf created PHP, which was
specifically made for web development and is also one of the
most used server-side scripting languages.

These scripting environments democratized programming even
more, giving developers the tools to write applications quickly
without being encumbered by low-level details of the computer.

9. High-Level Programming Languages and New Software
Development Practices

Since the 21st century, there has been a proliferation of new
types of programming languages and new types of treatments to
match. Go, Rust, Swift, and Ruby are some of the languages
created to solve specific web development, system
programming, and mobile app development problems.

Go (Golang): Created by Google in 2007, Go is intended to be
minimal, fast, and concurrent — perfect for building distributed
systems at scale.

Rust: Focused on memory safety and parallelism to enable
developers to write performance-critical systems with achieve
effects comparable to C or C++.

Swift: Swift is a powerful modern programming language that
is easy to use, safe, and fast for creating i0OS and macOS apps.
Ruby is both known for its simplicity and for the popular web
framework, Ruby on Rails. A major innovation in web
development that quickly proliferated among developers, the
language itself made complex web applications possible and
easy to build.

476 © 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Mullti. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025

These languages metro the sign of the times when it comes to
software -simplicity, scalability, and flexibility.

CONCLUSION

Trends and Developments: The history of programming
languages is nothing if not one long struggle for abstraction and
efficiency. From assembler to the high-level languages of
today, each phase brought new features and revolutionized
software development practice. New languages will develop as
new technologies are introduced to fill the space needed in the
software development of tomorrow.

REFERENCES

1. Ritchie DM, Thompson K. The UNIX Time-Sharing
System. Commun ACM. 1974;17(7):365-75.

2. Stroustrup B. The C++ Programming Language. Addison-
Wesley; 1986.

3. Van Rossum G. Python: A Programming Language for
Software Integration and Development. In: Proceedings of
the 9th International Conference on Software Engineering
and Knowledge Engineering; 1995.

4. Gosling J, Joy B, Steele G, Bracha G. The Java™
Programming Language. Addison-Wesley; 2005.

5. Wirth N. Algol W and its Implementation. Springer-
Verlag; 1976.

6. Kumar, R. (2019). MACHINE LEARNING: CONCEPT,
DEEP LEARNING AND APPLICATIONS. WIRELESS
COMMUNICATION AND MATHEMATICS, 49.

7. McCarthy J. LISP: A Programming Language for Artificial
Intelligence. Commun ACM. 1960;3(2):82-92.

8. Bernstein J. Introduction to Programming in C. McGraw-
Hill; 1999.

9. Ousterhout J. Tcl and the Tk Toolkit. Addison-Wesley;
1994.

10. Lerdorf R. PHP: A Practical and Powerful Tool for Web
Development. Int] Web Program. 2002.

11. Kernighan, B. W., Ritchie, DM. The C Programming
Language. Prentice Hall; 1978.

12. Van Rossum G, Deneckere M. Python: A Multi-Paradigm Creative Commons (CC) License

Langcua for W Development. 1EEE ftw. This article is an open-access article distributed under the terms and
20 Oguz 6g(65) P 60 31 eb cvelopme So conditions of the Creative Commons Attribution (CC BY 4.0) license.
5 . . .

This license permits unrestricted use, distribution, and reproduction in

13. Dijkstra EW. The Structure of the "THE" any medium, provided the original author and source are credited.
Multiprogramming System. Commun ACM. About the Corresponding Author
1968:1 1(5):34176. Dr. Rajin(.ler Kumar is an Associate Professor at G_um
14. Tanenbaum AS, Bos H. Modern Operating Systems. N i Unbewily, Mool Sibe, Baiifeis, i,
India. He is actively engaged in teaching and research,
Pearson, 2014. : contributing to academic excellence through his
15. Isern J, Sanchez D. The Evolution of High-Level expertise and scholarly work in his field.

Programming Languages. J Comput Softw Eng.
2011;27(2):101-14.

477 © 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

