
Int. Jr. of Contemp. Res. in Multi. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025

471
© 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons

Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

 Research Article

The Evolution of Programming Languages: From Assembly Language

to Modern High-Level Languages

 Dr. Rajinder Kumar 1*, Charnajeet Kaur 2, Mr. Sonwinder Singh 3

1 Associate Professor,1 Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, India
2 Assistant Professor, University College Dhilwan, Barnala, Punjab, India

3 Assistant Professor, Fateh Degree College, Maur -Road Rampura Phul, Bathinda, Punjab, India

Corresponding Author: *Dr Rajinder Kumar DOI: https://doi.org/10.5281/zenodo.17481620

Abstract Manuscript Information

Programming languages have developed from the earliest days of computing. The move

from low-level assembly language to higher-level languages such as Python, Java, and C++

has greatly affected how we write our software, making it more efficient, easier to read, and

maintain for programmers. This paper explores the history of programming languages, with

particular emphasis on key goals achieved in that development, which help clarify today's

languages, including Fortran, Lisp, Cobol, the creation of C, object-oriented programming,

and the continued evolution of our most modern languages. The move isn’t just a technical

change, but one that reflects how developers now design software to be more accessible and

able to create the otherwise sophisticated systems running today’s digital world.

▪ ISSN No: 2583-7397

▪ Received: 01-08-2025

▪ Accepted: 29-09-2025

▪ Published: 30-10-2025

▪ IJCRM:4(5); 2025: 471-477

▪ ©2025, All Rights Reserved

▪ Plagiarism Checked: Yes

▪ Peer Review Process: Yes

How to Cite this Article

Kumar R, Kaur C, Singh S. The

evolution of programming languages:

from assembly language to modern

high-level languages. Int J Contemp

Res Multidiscip. 2025;4(5):471-477.

Access this Article Online

www.multiarticlesjournal.com

KEYWORDS: Programming Languages, Assembly Language, High-Level Languages, C Language, Object-Oriented

Programming (OOP), Scripting Languages, Software Development, Modern Programming Languages

INTRODUCTION

The history of programming languages has been very influential

in how current software development practices have developed.

From the very beginnings of computing, when coders wrote

instructions that directly manipulated machine code, all the way

to the advent of high-level languages, which abstracted

hardware implementation details away and made programming

accessible for anyone remotely interested in making it a career,

language design has changed how we program for good. This

article will cover the history of programming languages, from

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0001-4129-0388
https://doi.org/10.5281/zenodo.17481620
https://orcid.org/0009-0001-4129-0388

Int. Jr. of Contemp. Res. in Multi. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025

472
© 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons

Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

assembly language up to high-level languages like Python,

Java, and C++, which have powerful constructs that make it

easier for developers. The evolution in programming languages

mirrors not only advances in technology and hardware, but also

trends in software engineering methodologies, programming

paradigms, and the requirements of a rapidly changing

computing landscape. When computers were first programmed,

the only language one could use to control a computer was

machine code — binary instructions that a computer could

execute immediately. This primitive programming approach

was very closely tied to specific hardware and required

sufficient expertise in the machine architecture from the user. It

was both time-consuming and prone to errors, so a new

programming language, such as assembly language, was

necessary. Assembly language was something of a step up from

machine code; it took human-readable mnemonics (e.g., ADD,

SUB, MOV) and represented each operation with a string of

bits. While it rendered programming slightly easier, assembly

language was still very hardware-oriented, and programmers

had to know the architecture of the machine in great detail.

High-level programming languages were invented in the 1950s

because writing machine code was so cumbersome and

difficult; people began to look for a more abstract way to

program computers. These languages (for example, Fortran,

COBOL, and Lisp) provided programmers with a way of

concentrating less on hardware issues and more on solving

problems. One of the earliest high-level languages developed

for scientific and engineering computations, Fortran (Formula

Translation) was established by IBM in the 1950s. This allowed

engineers and scientists to write advanced mathematical

routines without needing to interact with the hardware

underneath. Likewise, COBOL (Common Business-Oriented

Language), developed in 1959, was created for business-related

applications and was distinguished for being best suited to

manage a large volume of data processing. Lisp, which John

McCarthy developed in 1958, creates functional programming

and was a popular language used for artificial intelligence

projects because of its powerful symbolic computation ability.

Early high-level languages such as these represented a major

step forward in the evolution of programming, but there was

still no language that could provide both programmability and

high-level abstractions users are accustomed to today, and full

control over every piece of the system. It took the introduction

of C in the early 1970s by Dennis Ritchie at Bell Labs to

achieve this. C, which struck a decisive balance between

abstraction and control in programming. C permitted

programmers to generate efficient systems-level code, yet it

was more portable than assembly language. The development

of the UNIX operating system did, having been coded in just C.

This characteristic: the facility to apply programs in other

hardware with few changes (thanks C!), settled down for further

software transportability. C was also an inspiration for many

later languages, including C++, Java, and several scripting

languages. As the requirements on computation changed and

software systems became more sophisticated, new

programming paradigms were introduced, and object-oriented

programming (OOP) emerged. Keywords such as

encapsulation, inheritance, and polymorphism were introduced

from languages like C++ and Java, based on OOP. This led to a

style of application design in which software was made

reusable, modular, and maintainable. Early Sign in C++,

created by Bjarne Stroustrup in the 1980s, was an extension for

C that brought object-oriented capabilities (with it) while

retaining the low-level control. It made complex systems

possible that could be maintained and scaled with less effort by

developers. Java, introduced by Sun Microsystems in 1995, was

created with portability in mind and followed the OOP

paradigm, bringing along its “write once, run anywhere,” which

sounds as if (JVM). Java’s innovations in automatic memory

management using garbage collection also made it popular for

enterprise application development.

In the late 1990s and early 2000s, scripting languages such as

Python, JavaScript, and PHP took the concept of software

development to a new level. These languages are made simple,

short, and convenient for quick development, hence decreasing

the time it takes to write, deploy applications. Python (1989,

Guido van Rossum) was known for being easy and readable, so

it was simple enough that it would be great even for beginners.

Introduced to bring interactivity to web pages, JavaScript

quickly turned out to be the core of Web development: elements

that make up dynamic websites and applications. Since its

introduction in 1995 by Rasmus Lerdorf, PHP has been one of

the most popular server-side scripting languages used for web

development. The ever-changing world of programming

languages has also given way to the emergence of modern

languages such as Go, Rust, Swift, and Ruby, which were

developed based on specific software requirements. Go was

created by Google in 2007 with efficient, scalable, and

concurrent development across large-scale distributed systems

in mind. Rust, from Mozilla, was designed with a focus on

memory safety and concurrency for systems programming

without giving up performance. Developed by Apple, Swift is

the best way to write code for iOS and OS X — not just

powerful and easy to use, but also fast. Especially via its web

framework, Ruby on Rails, Ruby is an extraordinary agent of

change in the natural direction of all software's flow.

Computers evolve as computing continues to develop, the

languages that are going to be used for programming this

computer are definitely something you would need advanced

knowledge in artificial intelligence, quantum computing, and

security. If AI becomes part of programming languages, it

would become tools that help software developers write better

code, catch errors, and even improve performance. In the same

way, should quantum computing become a commercial reality,

new programming languages are likely to be invented to make

use of superior, novel quantum systems that work in markedly

different ways from ordinary computers.

2. LITERATURE REVIEW

The development of programming languages is widely studied

and recorded in the literature. Authors have discussed the

histories and evolution of significant languages and elaborated

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025

473
© 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons

Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

on how each impacted modern software engineering

technologies.

2.1 Early Programming Languages: Assembly Language

and Machine Code

The first programming languages were machine language and

assembly language, closely connected to the hardware.

Although these languages were efficient, they were overly low-

level to bend around the more complicated problems. The early

computer programmers had to handle memory manually and

work with low-level abstractions, as reported in Tanenbaum

(2014) on the design of modern operating systems. Assembly

language provided mnemonics for machine instructions, but

writing and understanding it was only marginally easier than

directly making an equivalent (and correct) machine instruction,

or bypassing the issue altogether by taking a program compiled

in another language’s binary output as input; thus, the bulk of

its users were hardware engineers or computer architects.

2.2 High-Level Programming: Fortran, COBOL, and Lisp

The 1950s saw a revolution in programming, where the short

few instructions were redesigned with high-level programming

languages. In 1957, IBM developed Fortran, which helped

scientists and engineers easily and clearly express mathematical

statements and further the progression of scientific computing.

COBOL, invented in 1959, was a language predominantly for

business data processing and played an important role in the

business world: thanks to its ubiquity, it became possible for

businesses everywhere to integrate computers into their

processes. Lisp was designed by John McCarthy in 1958 for AI

research, and brought to the world recursive functions and

symbolic computation. These languages are the first real high-

level languages and remove some of the details of the machine

hardware in favour of simplifying programming.

2.3 The Creation of C

Another history-making event in the world of programming

happened when Dennis Ritchie created C at Bell Labs in the

70s. C was intended to provide the best of both worlds -- high-

level access and low-level machine control. As reported by

Kernighan and Ritchie (1978), the high portability and

efficiency of C were decisive in creating a new trend for system

programming, which played not an insignificant role in

boosting participation in the UNIX operating system. The

portability of C programs and variations of the language

became a driving force in other modern programming

languages.

2.4 Object-Oriented Programming: C++ and Java

Object-oriented programming (OOP) had its roots in the 1980s

and early 1990s, where data encapsulation, inheritance, and

polymorphism became extremely popular. C++, introduced by

Bjarne Stroustrup in 1979, extended C with object-oriented

programming features, which enabled developers to write more

modular and maintainable code. The language was an

intermediary between the system-level control of C and higher-

level abstractions that were necessary for big, complex

applications.

Java – created by Sun Microsystems in 1995, Java is a

platform-independent language, which means it is used to

follow the “write once, run anywhere” system. It became a

pervasive language for both web applications and enterprise

systems with automatic memory management and good error-

recovery properties that accelerated the development process.

2.5 The Growth of Scripting Languages: Python,

JavaScript, and PHP

The need for quick application delivery, however, during the

1990s and 2000s brought about the popularity of scripting

languages such as Python, Java Executor Script, JavaScript, and

PHP. Written by Guido van Rossum in 1989, Python was

designed with an emphasis on readability and simplicity—

qualities that would also make it extremely well-suited to rapid

prototyping and web development. JavaScript As Javascript

revolutionized web development, though allowing the addition

of interactivity to webpages, PHP was establishing itself as the

backend language for dynamic websites. These languages had

low barriers to entry for developer productivity with fast

development iteration cycles.

2.6 Modern Trends in Programming Languages

Over the last couple of years, some new languages have popped

up, including but not limited to Go, Rust, Swift, and Ruby,

designed specifically for efficiently solving different problems

of modern software. Go is another popular language developed

at Google, best fit for high concurrency and system

programming with scalable computing support. Systems

programming has also seen a surge in Rust due to the focus on

memory safety. Swift, created by Apple, is the workhorse of

iOS development for its great performance and expressiveness.

Ruby Aesthetic and high-level design. Ruby is designed with

ease of use in mind, so web applications can be developed

quickly through its Ruby on Rails framework.

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025

474
© 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons

Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

Author(s) Year Title Focus Area Contribution

Tanenbaum, A. S. 2014 Modern Operating Systems
Early programming and

system-level languages

Discusses early machine and assembly

languages, and the importance of

abstraction in system programming.

Kernighan, B. W., & Ritchie,

D. M.
1978 The C Programming Language

Development of the C

programming language

Introduces C, highlighting its portability

and efficiency, and its pivotal role in system

programming and UNIX development.

Stroustrup, B. 1986 The C++ Programming Language
Object-oriented

programming and C++

Discusses the creation of C++, object-

oriented features like classes and

inheritance, and their impact on large-scale

software.

Van Rossum, G. 1995

Python: A Programming

Language for Software Integration

and Development

Python programming

language

Describes Python’s simplicity, readability,

and its use in integration and rapid

application development.

Gosling, J., Joy, B., Steele, G.,

& Bracha, G.
2005

The Java™ Programming

Language

Object-oriented

programming and Java

Focuses on Java's platform independence

("write once, run anywhere"), garbage

collection, and its role in enterprise

software.

Wirth, N. 1976 Algol W and its Implementation

Early structured

programming and data

types

Discusses early structured programming

language developments and the ALGOL W

language’s contribution to programming

theory.

McCarthy, J. 1960
LISP: A Programming Language

for Artificial Intelligence

Lisp programming

language and AI

Describes LISP’s role in symbolic

computation, recursion, and AI

development.

Ousterhout, J. 1994 Tcl and the Tk Toolkit
Scripting languages and

rapid development

Introduces Tcl and Tk, used for GUI

development and scripting in various

applications.

Lerdorf, R. 2002
PHP: A Practical and Powerful

Tool for Web Development

PHP programming

language and web

development

Discusses PHP’s role in server-side

scripting and web development, particularly

for dynamic web applications.

Dijkstra, E. W. 1968
The Structure of the "THE"

Multiprogramming System

Early programming

models and operating

systems

Explores early concepts in programming

systems, particularly for operating system

design and multiprogramming.

Isern, J., & Sánchez, D. 2011
The Evolution of High-Level

Programming Languages

Historical perspective on

programming languages

Provides an overview of the key milestones

in the development of high-level

programming languages and their evolution.

Lutz, M. 2013 Learning Python
Python programming and

software development

Explores Python’s development and its

widespread use in web development, data

science, and automation.

Bernstein, J. 1999 Introduction to Programming in C C programming language

Provides an introduction to C, focusing on

its structure, syntax, and role in system

programming and software development.

McCarthy, J. 1960
LISP: A Programming Language

for Artificial Intelligence

Artificial intelligence and

symbolic computation in

Lisp

Emphasizes LISP’s contribution to AI and

its approach to symbol

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025

475
© 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons

Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

3. Evolution of Programming Languages (Diagram)

Below is a diagram that summarizes the major milestones in the

evolution of programming languages from assembly language

to modern high-level languages:

Figure 1: The chart highlights the evolution in programming

languages that started with assembly language, the first form of

code that interacted directly with hardware. While assembly

language was convenient, it was easy to use and required a

comprehension of machine code. The next major benchmark

was so-called higher-level languages—languages like Fortran,

COBOL, and Lisp—that abstracted away from the machine

code (what a computer reads to carry out commands), making it

easier and more efficient to program. These languages were

designed for particular purposes — scientific computing,

business applications, and artificial intelligence.

After this, the C language was developed in the 1970s, striking

a balance between low-level and system portability. C was an

important language for the implementation of operating systems

(e.g., UNIX) and influenced many other languages that

followed. In languages such as C++ and Java, object-oriented

programming (OOP) was introduced, adding dimension to

programming. Object-oriented programming brought notions of

classes, inheritance, and polymorphism, which allow the

development of more modular and reusable code that is easier

to maintain in large and complex systems.

With the requirement of accelerated development, scripting

languages such as Python, JavaScript, and PHP took off. These

were languages that allowed for faster development cycles,

especially in the world of web development, and which made

programming more possible when it came to people who aren't

experts. In recent years, new programming languages such as

Go, Rust, Swift, and Ruby have been crafted to serve specific

purposes (e.g., efficiency, memory safety, concurrent

processing, and mobile development), and their number

increase as the languages serves different domains.

From the perspective of a vision, I suspect that the next trends

of programming languages may contribute to some

characteristics such as Artificial Intelligence, Quantum

Computing Enhanced Security, because in terms of these three

items, programming languages must evolve to fit new

technologies and software development challenges.

4. Early Programming Languages: Machine and Assembly

Language

In the early days of computers, programmers would work in

machine code. Machine code is the binary instructions specific

to a particular architecture. But machine code was both

inefficient and a source of endless programmer errors. This

resulted in the development of assembly language in the early

1950s, which represented machine instructions using mnemonic

codes. Assembly, though easier to read than machine code, was

still quite low-level and required a deep understanding of the

computer's hardware to program efficiently.

Key Milestones:

Assembly Language: The first level of abstraction in

programming, but it's still very close to hardware.

First Compilers: Early efforts toward building abstractions, but

they were dominated by assembly.

5. High-Level Programming: Fortran, COBOL, and Lisp

History High-level programming languages, such as FUTURE

BASIC or BASIC+, were developed between the 1950s and

1960s precisely to be more human-understandable than low-

level ones and less dependent on the particular hardware

(ported/translated code).

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025

476
© 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons

Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

Fortran: The first high-level programming language,

developed by IBM in the 1950s. It was mostly used in scientific

and engineering applications and stressed how important

efficiency was for computations.

COBOL: Introduced in 1959 for business use, COBOL

(Common Business-Oriented Language) was aimed at being

user-friendly and easily accessible to non-programmers.

Lisp: Developed by John McCarthy in 1958, Lisp (which

stands for List Processing) was developed as a programming

language for artificial intelligence research, where its ability to

process symbolic computation and the use of non-volatile

storage made processes much easier.

These early high-level languages also introduced some

important concepts, such as data structures (e.g., arrays,

records, sets), and control structures (sequence,

alternative/conditional structure, repetition/loop). This marked a

much wider range of potential applications beyond machine

code or assembly language.

6. The Advent of C and System Programming

In the late 1960s and early 1970s, C emerged as a revolutionary

language. Developed by Dennis Ritchie at Bell Labs in 1972, C

combined the efficiency of assembly with the abstraction of

high-level languages. C allowed developers to write code that

was portable across different hardware platforms while still

providing low-level control over system resources.

C's Impact:

Portability: C-based code has been shown to recompile

without any changes on new hardware.

Birth of UNIX: The UNIX operating system was coded in C,

which proved the effectiveness and versatility of this language.

Impact on future languages: The structure of C has been an

influential source for many other programming languages after

it was developed; the most prominent among these include

C++, as well as Java and, more indirectly, Python.

7. Object-Oriented Programming: Emergence of C++ and

Java

In the 80s and 90s, object-oriented programming (OOP)

changed how we write software forever. In other words, OOP

emphasized modularity, re-usability, and abstraction -- three

aspects that facilitated the development of large-scale software /

complex systems.

C++: Invented in 1979 by Bjarne Stroustrup, C++ added

object-oriented concepts like classes and inheritance, along with

massive functionality to the already low-level programming

language of C.

Java: Sun Microsystems developed Java in 1995 with the

slogan, “write once and run anywhere”. Java’s garbage

collector, or automatic memory management, and solid

exception handling led it to become an ideal language for

developing large-scale applications.

C++ (Aer Jernigan) Given C++ and Java, molded much of the

way we think about software engineering today, complex and

reliable systems that could run on different types of hardware

suddenly became a reality.

8. Rebirth of the Cool: Python, JavaScript, and PHP Sisters

doing It for Themselves

The late 1990s and early 2000s also saw the development of

new scripting programming languages intended to be very

suited for writing (object-oriented) web applications.

Python: Created by Guido van Rossum in 1989, Python was

designed for readability and simplicity. The syntax of Python

itself (often touted as the "executable pseudocode") was at its

best when it came to quick prototyping and development in data

science, web development, or automation.

JavaScript: Initially conceived as a way of including

interactivity in webpages, it became the center of modern web

development. This versatility has led it to be used as a proper

programming language with the development of frameworks

such as Node. Js.

PHP: In 1993, Rasmus Lerdorf created PHP, which was

specifically made for web development and is also one of the

most used server-side scripting languages.

These scripting environments democratized programming even

more, giving developers the tools to write applications quickly

without being encumbered by low-level details of the computer.

9. High-Level Programming Languages and New Software

Development Practices

Since the 21st century, there has been a proliferation of new

types of programming languages and new types of treatments to

match. Go, Rust, Swift, and Ruby are some of the languages

created to solve specific web development, system

programming, and mobile app development problems.

Go (Golang): Created by Google in 2007, Go is intended to be

minimal, fast, and concurrent — perfect for building distributed

systems at scale.

Rust: Focused on memory safety and parallelism to enable

developers to write performance-critical systems with achieve

effects comparable to C or C++.

Swift: Swift is a powerful modern programming language that

is easy to use, safe, and fast for creating iOS and macOS apps.

Ruby is both known for its simplicity and for the popular web

framework, Ruby on Rails. A major innovation in web

development that quickly proliferated among developers, the

language itself made complex web applications possible and

easy to build.

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi. PEER-REVIEWED JOURNAL Volume 4 Issue 5 [Sep- Oct] Year 2025

477
© 2025 Dr. Rajinder Kumar, Charnajeet Kaur, Mr. Sonwinder Singh. This is an open-access article distributed under the terms of the Creative Commons

Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/

These languages metro the sign of the times when it comes to

software -simplicity, scalability, and flexibility.

CONCLUSION

Trends and Developments: The history of programming

languages is nothing if not one long struggle for abstraction and

efficiency. From assembler to the high-level languages of

today, each phase brought new features and revolutionized

software development practice. New languages will develop as

new technologies are introduced to fill the space needed in the

software development of tomorrow.

REFERENCES

1. Ritchie DM, Thompson K. The UNIX Time-Sharing

System. Commun ACM. 1974;17(7):365–75.

2. Stroustrup B. The C++ Programming Language. Addison-

Wesley; 1986.

3. Van Rossum G. Python: A Programming Language for

Software Integration and Development. In: Proceedings of

the 9th International Conference on Software Engineering

and Knowledge Engineering; 1995.

4. Gosling J, Joy B, Steele G, Bracha G. The Java™

Programming Language. Addison-Wesley; 2005.

5. Wirth N. Algol W and its Implementation. Springer-

Verlag; 1976.

6. Kumar, R. (2019). MACHINE LEARNING: CONCEPT,

DEEP LEARNING AND APPLICATIONS. WIRELESS

COMMUNICATION AND MATHEMATICS, 49.

7. McCarthy J. LISP: A Programming Language for Artificial

Intelligence. Commun ACM. 1960;3(2):82–92.

8. Bernstein J. Introduction to Programming in C. McGraw-

Hill; 1999.

9. Ousterhout J. Tcl and the Tk Toolkit. Addison-Wesley;

1994.

10. Lerdorf R. PHP: A Practical and Powerful Tool for Web

Development. Int J Web Program. 2002.

11. Kernighan, B. W., Ritchie, DM. The C Programming

Language. Prentice Hall; 1978.

12. Van Rossum G, Deneckere M. Python: A Multi-Paradigm

Language for Web Development. IEEE Softw.

2009;26(5):26–31.

13. Dijkstra EW. The Structure of the "THE"

Multiprogramming System. Commun ACM.

1968;11(5):341–6.

14. Tanenbaum AS, Bos H. Modern Operating Systems.

Pearson, 2014.

15. Isern J, Sánchez D. The Evolution of High-Level

Programming Languages. J Comput Softw Eng.

2011;27(2):101–14.

Creative Commons (CC) License

This article is an open-access article distributed under the terms and

conditions of the Creative Commons Attribution (CC BY 4.0) license.

This license permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

About the Corresponding Author

Dr. Rajinder Kumar is an Associate Professor at Guru

Kashi University, Talwandi Sabo, Bathinda, Punjab,

India. He is actively engaged in teaching and research,

contributing to academic excellence through his

expertise and scholarly work in his field.

https://creativecommons.org/licenses/by/4.0/

