Int. Jr. of Contemp. Res. in Multi.

Volume 3 Issue 5 [Sep- Oct] Year 2024

of
Contemporary Research

Multidisciplinary

Research Article

Secure API Design and Authentication Strategies for Distributed

Microservices Systems

Sravika Koukuntla *

Senior Research Associate and Technology Lead, Vanguard Richardson, TX, 19087

Corresponding Author: * Sravika Koukuntla

Abstract

The rapid adoption of cloud-native applications has led to the widespread use of microservices
architecture, where complex systems are decomposed into independently deployable services
that communicate primarily through application programming interfaces (APIs). While this
architectural paradigm improves scalability, flexibility, and development agility, it also
significantly expands the system’s attack surface, making API security a critical challenge in
distributed environments. In particular, issues related to authentication, authorisation, service-
to-service trust, and API abuse become more complex as security controls are decentralised
across multiple services and networks. This project investigates the design and implementation
of secure API and authentication strategies tailored for distributed microservice systems. A
security-by-design methodology was adopted, integrating protection mechanisms at multiple
architectural layers, including an API gateway, identity and access management service, and
individual microservices. Token-based authentication using OAuth 2.0 and JSON Web Tokens
(JWT) was implemented to enable stateless, scalable identity verification, while fine-grained
role- and scope-based authorisation was used to enforce the principle of least privilege.
Additionally, a zero-trust communication model was applied to internal service interactions,
ensuring that all requests—whether external or internal—were explicitly authenticated and
authorised. The proposed architecture was evaluated under realistic medium-scale workloads
over an extended testing period, simulating both normal operational traffic and adversarial
scenarios such as token misuse, replay attacks, unauthorised access attempts, and request
flooding. Quantitative results demonstrate that the system achieved high authentication
accuracy, effectively blocking the vast majority of unauthorised requests while maintaining
acceptable latency under peak load conditions. Authorisation mechanisms successfully
prevented privilege escalation and lateral movement between services, even when internal
service identities were assumed to be compromised. The API gateway played a pivotal role in
reducing backend exposure to malicious traffic, and rate-limiting controls ensured service
availability during high-volume request bursts. Overall, the findings confirm that secure API
design, when combined with robust authentication, fine-grained authorisation, and zero-trust
principles, can significantly enhance the security and resilience of distributed microservices
systems without imposing prohibitive performance overhead. This study provides a practical,
validated framework that can guide the development of secure microservices-based applications
in real-world cloud environments.

DOI:

https:/doi.org/10.5281/zenodo.18464699

Manuscript Information
= ISSN No: 2583-7397
= Received: 06-08-2024
= Accepted: 28-09-2024
= Published: 30-10-2024
= JJCRM:3(5); 2024: 274-282
= ©2024, All Rights Reserved
= Plagiarism Checked: Yes
= Peer Review Process: Yes

How to Cite this Manuscript

Koukuntla S. Secure API Design and
Authentication Strategies for
Distributed Microservices Systems.
International Journal of Contemporary
Research in Multidisciplinary.2024;
3(5):274-282.

KEYWORDS: Electronics Engineering, Telecommunication Systems, Signal Processing, Communication Technologies, Embedded

Systems.

274 BY NC ND). https://creativecommons.org/licenses/by/4.0/

© 2024 Sravika Koukuntla. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.18464699

Int. Jr. of Contemp. Res. in Multi.

Volume 3 Issue 5 [Sep- Oct] Year 2024

INTRODUCTION

The rapid evolution of cloud-native applications has led to the
widespread adoption of Microservices Architecture, a paradigm
that decomposes large monolithic systems into independently
deployable, loosely coupled services. Each microservice exposes
functionality through well-defined APIs, enabling scalability,
resilience, and faster development cycles. However, this
architectural shift significantly expands the attack surface,
making API security a critical concern in modern distributed
systems. In microservices-based environments, APIs serve as the
primary communication channel between services as well as
between external clients and backend systems. Unlike traditional
monolithic applications—where security controls are
centralised—distributed microservices require security to be
enforced consistently across multiple services, networks, and
deployment environments. This decentralisation introduces
complex challenges related to authentication, authorisation,
identity =~ propagation, and secure service-to-service
communication. One of the most prominent risks in distributed
systems is unauthorised access to APIs, which can lead to data
breaches, privilege escalation, and service disruption. Threats
such as token theft, replay attacks, insecure endpoints, and
misconfigured access controls are amplified in microservices
ecosystems due to the large number of exposed endpoints.
Consequently, secure API design must be embedded into the
system from the earliest stages of architecture planning rather
than being treated as an afterthought.

Authentication plays a foundational role in securing APIs by
verifying the identity of users, applications, or services
attempting to access resources. Modern microservices
increasingly rely on token-based and federated authentication.

mechanisms, such as OAuth 2.0, OpenID Connect, and JSON
Web Token. These approaches enable stateless authentication,
scalability, and interoperability across heterogeneous services,
which are essential characteristics of distributed architectures.
Beyond authentication, secure API design encompasses
principles such as least privilege, defence in depth, secure
defaults, and explicit trust boundaries. Components like API
Gateway act as security enforcement points, handling concerns
such as request validation, rate limiting, authentication
offloading, and traffic monitoring. Internally, microservices
often adopt zero-trust communication models, where every
service request must be authenticated and authorised regardless
of its origin. This project focuses on designing secure APIs and
implementing robust authentication strategies tailored for
distributed microservices systems. It explores architectural
patterns, authentication workflows, token management practices,
and service-to-service security mechanisms that collectively
enhance system resilience against evolving cyber threats. By
aligning security controls with microservices principles,
organisations can achieve both agility and strong protection for
their digital assets.

2. System Architecture and Threat Model

In a distributed microservices system, security architecture must
be deliberately designed to protect APIs that operate across
multiple trust boundaries. Unlike monolithic applications—
where internal calls are implicitly trusted—microservices
communicate over networks that are often shared, dynamic, and
exposed to internal as well as external threats. Therefore, the
system architecture itself becomes a critical security control
layer.

Secure API Design and Authentication Strategies for Distributed Microservices Systems

Microservices Architecture

Authentication Methods

API Security Challenges

2o S0 T

Unauthoized Token Replay Insecure
Access Theft Attacks Endpoints

Security Best Practices

B Oy (& o6

Least Privilege Zero Trust Model Rate Limiting

Encryption

DO Gy

OAuth 2.0 OpeniD Connect JWT Tokens

Secure Service Communication

Mutual TLS & Identity Propagation

275 © 2024 Sravika Koukuntla. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC

BY NC ND). https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi.

Volume 3 Issue 5 [Sep- Oct] Year 2024

A typical secure microservices architecture is organised around
a centralised APl Gateway, which acts as the single external
entry point for client requests. The API gateway performs
preliminary security enforcement, including request validation,
authentication, rate limiting, and traffic filtering. This design
reduces direct exposure of backend services and ensures
consistent policy enforcement across all APIs.

Behind the gateway, individual microservices are deployed as
independent units, each owning its data and business logic.
Communication between services occurs over lightweight
protocols such as HTTP/REST or gRPC, often within
containerised environments orchestrated by platforms like
Kubernetes. While orchestration platforms provide network
isolation and service discovery, they do not inherently guarantee
secure communication, making application-level security
essential.

From a trust perspective, modern architectures increasingly
adopt a Zero Trust Architecture model. In this approach, no
request—whether originating from an external client or an
internal service—is trusted by default. Every interaction must be
authenticated, authorised, and validated. This principle is
particularly important in microservice systems, where lateral
movement by attackers can otherwise occur once a single service
is compromised.

Threat Model Overview

Designing secure APIs requires a clear understanding of
potential threats that target distributed microservices
environments. One major threat is unauthorised access, where
attackers exploit weak authentication or leaked credentials to
invoke APIs. Token theft, insecure storage of secrets, and lack of
token expiration can all lead to prolonged unauthorised access
across multiple services.

System Architecture and Threat Model for Distributed Microservices Systems

Secure Microservices Architecture

-~

=, .

Microservice A
p Zero Trust Principle |
Never Trust, Always Verify \

Service-to-Service
Authentication

Client App

Secure Zone —

= Zero Trust Architecture Strict
1 4 : \ J Authentication
No request is trusted by default # & Authorization

Another critical risk is API abuse and denial-of-service attacks.
Since microservices expose numerous endpoints, attackers may
attempt request flooding, brute-force authentication attempts, or
parameter manipulation to exhaust system resources. Without
proper rate limiting and request validation at the gateway level,
such attacks can cascade and disrupt dependent services.
Man-in-the-middle (MITM) attacks pose an additional threat,
particularly in service-to-service communication. If internal
traffic is not encrypted or authenticated, attackers who gain
network access can intercept or modify API requests. This risk
underscores the importance of mutual authentication and
encrypted communication channels between microservices.

External |

-
o) -
— (Service

Secure
= Zone

- -
Kubernetes Platform

= —

Threat Model Overview

¥~ Unauthorized Access

,jg ﬁ Leaked credentials, bypassing weak
authentication

API Abuse & DDoS Attacks

Request flooding, brute-force,
parameter abuse

Man-In-The-Middle Attacks

*{ Interception of unencrypted internal
traffic

y Privilege Escalation
f Gaining higher access via weak
authorization

Configuration Errors

= and policies
etes =2

@ E] Misconfigured security settings
Kubern

Potential Risks in Distributed Systems

: » Unauthorized Access
/1 \ API Abuse & DDoS
> Man-In-The-Middle Attacks

Privilege Escalation
Misconfiguration Errors

Privilege escalation is another common concern in distributed
systems. Improperly designed authorisation logic or overly
permissive service roles may allow a compromised service to
access resources beyond its intended scope. This violates the
principle of least privilege and can result in widespread data
exposure. Finally, misconfiguration and inconsistent security
policies remain a significant source of vulnerabilities. In
microservice systems, security controls are distributed across
multiple components. Any inconsistency—such as missing
authentication on a single endpoint—can become an entry point
for attackers.

276 © 2024 Sravika Koukuntla. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC

BY NC ND). https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi.

Volume 3 Issue 5 [Sep- Oct] Year 2024

By aligning system architecture with a well-defined threat
model, secure API design can proactively mitigate these risks.
The combination of API gateways, zero-trust principles,
encrypted communication, and strict authentication policies
forms the foundation for resilient distributed microservices
systems.

3. Secure API
Microservices
Secure API design forms the backbone of resilient distributed
microservices systems. Since APIs act as the primary interface
between services and external clients, their design directly
influences the system’s exposure to security threats. In
microservices environments, where services are independently
developed and deployed, consistent and well-defined security
principles are essential to prevent vulnerabilities from
propagating across the ecosystem. A fundamental principle of
secure API design is explicit trust boundaries. Every API must
clearly define who is allowed to access it and under what
conditions. In distributed systems, assuming that internal traffic
is inherently safe is a critical mistake. APIs should be designed
with the assumption that all requests—whether originating
externally or internally—may be hostile. This mindset ensures
that authentication and authorisation checks are enforced
uniformly across all service endpoints.

Another key principle is least privilege access. APIs should
expose only the minimum set of operations required for a client
or service to perform its function. Overly broad endpoints or
generic access tokens increase the risk of misuse if credentials
are compromised. By designing fine-grained APIs with scoped
permissions, organisations can limit the blast radius of security
incidents and prevent unauthorised actions even when access is
partially breached.

Statelessness is also central to secure API design in
microservices. Stateless APIs do not store session information on
the server, relying instead on tokens or credentials provided with
each request. This approach not only improves scalability but
also reduces attack vectors related to session hijacking and
server-side state manipulation. Proper token validation and
expiration policies ensure that stateless authentication remains
secure without sacrificing performance.

Input validation and strict schema enforcement represent another
critical design aspect. APIs must treat all incoming data as
untrusted and validate it rigorously before processing. Poor
validation can lead to injection attacks, malformed requests, or
logic exploitation. Designing APIs with well-defined request and
response schemas, along with consistent error handling, helps
prevent information leakage and unintended behaviour.
Versioning and backward compatibility play an indirect yet
important role in security. As APIs evolve, older versions may
contain deprecated or weaker security mechanisms. Explicit
versioning allows teams to phase out insecure endpoints while
maintaining controlled transitions for clients. Secure API design
ensures that obsolete versions are eventually retired and do not
remain as hidden attack surfaces. Finally, security by default
should be embedded into the API lifecycle. Secure defaults—

Design Principles for Distributed

such as mandatory authentication, encrypted communication,
and restricted access—reduce the likelihood of misconfiguration.
Developers should be required to explicitly relax security
controls only when necessary, rather than adding them
retroactively. This approach aligns API development with
defence-in-depth strategies and promotes consistent security
practices across all microservices.

By adhering to these secure API design principles, distributed
microservices systems can achieve a balance between flexibility
and protection. Well-designed APIs not only support scalability
and interoperability but also serve as a robust first line of defence
against modern cyber threats.

4. METHODOLOGY

This project adopted a systematic, design-oriented methodology
to develop and evaluate secure API design and authentication
strategies for distributed microservices systems. The
methodology was structured to reflect real-world industry
practices while maintaining architectural rigour and security best
practices. The overall approach combined architectural design,
threat-driven security modelling, controlled implementation, and
validation through simulated attack scenarios.

4.1 Project Design Approach

The methodology followed a security-by-design approach,
where security considerations were integrated at every stage of
the system lifecycle rather than being applied post-deployment.
The project was executed in four major phases:
(1) architectural design of a distributed microservices system,
2) threat modelling and risk identification,
(3) implementation of secure API and authentication
mechanisms, and

(4) evaluation and validation of security controls.

A modular microservices-based application was conceptualised
to simulate a real-world distributed environment. The system
was intentionally designed to expose multiple APIs with both
external client access and internal service-to-service
communication, allowing comprehensive evaluation of
authentication, authorisation, and API security controls.

4.2 Microservices Architecture Design

The system architecture was designed using a cloud-native
microservices model, where each service represented a distinct
business capability and operated independently. Services were
designed to be stateless, loosely coupled, and independently
deployable. Each microservice exposed RESTful APIs with
clearly defined contracts and ownership boundaries.

A centralised API Gateway was positioned as the single-entry
point for all external client requests. The gateway acted as a
policy enforcement layer, responsible for handling
authentication delegation, request validation, rate limiting, and
traffic routing. This architectural choice ensured that backend
services were not directly exposed to untrusted clients,
significantly reducing the external attack surface.

Internal communication between microservices was designed to
occur over secure HTTP or gRPC channels. Each service

277 © 2024 Sravika Koukuntla. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC

BY NC ND). https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi.

Volume 3 Issue 5 [Sep- Oct] Year 2024

validated incoming requests independently, ensuring that
internal calls were not implicitly trusted. This design aligned
with zero-trust principles and prevented lateral movement in the
event of a service compromise.

4.3 Threat Modelling and Security Requirements Analysis
Before implementation, a structured threat modelling exercise
was conducted to identify potential security risks specific to
distributed microservices environments. Common threat vectors
such as unauthorised API access, token replay attacks, man-in-
the-middle attacks, excessive privilege escalation, and denial-of-
service attacks were systematically analysed.

Based on the identified threats, explicit security requirements
were defined. These included mandatory authentication for all
APIs, fine-grained authorisation controls, secure token handling,
encrypted communication channels, and strict validation of all
incoming requests. This threat-driven approach ensured that
security mechanisms were aligned directly with realistic attack
scenarios rather than theoretical assumptions.

4.4 Authentication Strategy Implementation

Authentication was implemented using token-based, stateless
authentication mechanisms to support scalability and distributed
deployment. OAuth 2.0 was selected as the primary authorisation
framework, with OpenID Connect layered on top for identity
verification. JSON Web Tokens (JWTs) were used to represent
authenticated identities and access claims.

An external Identity and Access Management (IAM) component
was integrated to issue and manage tokens. Upon successful
authentication, clients received short-lived access tokens
containing scoped permissions and identity claims. These tokens
were validated at the API gateway and again at the microservice
level to prevent token misuse or replay.

For service-to-service authentication, mutual trust was
established through token-based validation rather than relying
solely on network-level security. Each microservice was
assigned a unique service identity, and inter-service tokens were
issued with narrowly scoped permissions, enforcing least
privilege access across internal communications.

4.5 Authorisation and Access Control Design

Authorisation logic was designed using a fine-grained, role- and
scope-based access control model. Rather than granting broad
access rights, APIs were protected using specific scopes that
mapped directly to individual operations or resources. This
ensured that services and clients could only perform actions
explicitly permitted by their tokens.

Authorisation checks were implemented at multiple layers. The
API gateway performed coarse-grained authorisation by
validating token scopes before forwarding requests. Backend
microservices enforced fine-grained authorisation rules based on
business logic and resource ownership. This layered
authorisation approach provided defence in depth and reduced
reliance on a single control point.

4.6 Secure API Design and Validation Controls

All APIs were designed following secure API design principles.
Each endpoint enforced strict input validation using predefined
request schemas. Unexpected parameters, malformed payloads,
and invalid data types were rejected early in the request lifecycle
to prevent injection attacks and logic exploitation.

Consistent error-handling mechanisms were implemented to
avoid information leakage. APIs returned standardised error
responses without exposing internal system details, stack traces,
or configuration information. Versioning strategies were applied
to APIs to ensure backward compatibility while allowing
insecure or deprecated endpoints to be phased out systematically.

4.7 Secure Communication and Zero Trust Enforcement

To protect data in transit, all external and internal API
communications were encrypted using TLS. Service-to-service
communication adopted a zero-trust communication model,
where every request required authentication and authorisation
regardless of network location.

No service implicitly trusted another service based on the
deployment context. Even internally generated requests were
required to present valid credentials and comply with defined
access policies. This approach ensured resilience against internal
breaches and misconfigurations.

4.8 Monitoring, Rate Limiting, and Abuse Prevention
Security monitoring was incorporated to detect abnormal API
behaviour. The API gateway enforced rate limiting to mitigate
denial-of-service and brute-force attacks. Request metrics,
authentication failures, and access patterns were logged for
analysis and anomaly detection.

Basic abuse prevention mechanisms were implemented by
restricting excessive requests, rejecting malformed payloads, and
enforcing strict request size limits. These controls prevented
cascading failures across dependent services during attack
scenarios.

4.9 Evaluation and Validation

The effectiveness of the implemented security mechanisms was
evaluated through controlled testing scenarios. Simulated
attacks, including unauthorised token usage, expired token
replay, excessive request flooding, and unauthorised service
calls, were conducted to validate the robustness of authentication
and authorisation controls.

The system’s response to these scenarios was analysed to ensure
that security violations were detected and blocked without
impacting legitimate traffic. The evaluation confirmed that
layered security controls, combined with secure API design and
zero-trust enforcement, significantly reduced the system’s
vulnerability to common distributed system attacks.

5. Results and Security Evaluation

This section presents the results obtained from the
implementation and evaluation of secure API design and
authentication strategies in a distributed microservices system.
The evaluation was carried out under realistic medium-scale

278 © 2024 Sravika Koukuntla. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC

BY NC ND). https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi.

Volume 3 Issue 5 [Sep- Oct] Year 2024

workloads, representative of an enterprise pilot or institutional
deployment. Quantitative metrics, comparative analysis, and
visual figures are used to demonstrate the effectiveness of the
proposed security architecture.

5.1 Experimental Environment and Traffic Profile

The system was evaluated continuously for 14 days to capture
normal usage patterns, peak loads, and abnormal traffic
behaviour.

Deployment Overview

API Gateway: 1 (policy enforcement enabled)
Microservices: 8 independently deployed services

Identity & Authentication Server: 1 primary, 1 standby
Total API endpoints: 72

Average daily requests: 18,000-25,000

Peak traffic observed: ~1,200 requests/sec

Traffic Distribution

e Legitimate client requests: 75%

e Internal service-to-service requests: 17%

e Invalid or malicious requests: 8%

5.2 Authentication Effectiveness

Authentication effectiveness was evaluated using OAuth 2.0
with JWT-based stateless authentication. Requests with valid,
expired, tampered, replayed, and missing tokens were analysed.

Table 5.1 Authentication Outcomes

Autshcil:lt;f_?:on R;g:tzf;s Allowed | Blocked | Accuracy (%)
Valid Tokens 24,600 24,410 190 99.23
Expired Tokens 8,200 0 8,200 100
Tampered Token |, | 5 0 4,150 100
Signatures
Replay Attempts 3,600 48 3,552 98.67
Missing Tokens 2,900 0 2,900 100

The authentication layer consistently rejected unauthorised
requests while maintaining high acceptance accuracy for valid
tokens. Minor replay leakage occurred only under burst traffic
conditions, remaining below 2%.

Figure 5.1. Authentication Decision Outcomes

9,000
M Allowed M Blocked
8,000
24,410 8,200
7,000
6,000
4,000
2,000
1000
0
Valid Tokens Expired Tampered Replay Missing
Tokens Signatures Attempts Tokens

Figure 5.1 illustrates the number of allowed and blocked requests across different
authentication scenarios, highlighting strong rejection rates for invalid tokens.

5.3 Authentication Latency Analysis
Authentication latency was measured to evaluate performance
overhead under increasing request volumes.

Table 5.2 Authentication Latency Metrics

Load Level (req/sec) Average Latency (ms) 95th Percentile (ms)
200 31 49
500 44 68
800 61 92
1,200 79 118

The latency increase was gradual and predictable, remaining
within acceptable response time limits for interactive APIs.

Figure 5.2 shows the relationship between request rate and authentication

latency, indicating scalable behaviour under load.

Figure 5.2. Authentication Latency vs Load
140

120

8

Latency (ms)
@
o

= Avg Latency
== 95th Percentile

200 500 800 1,200
Request Rate (requests/sec)

5.4 Authorisation Accuracy and Least Privilege Enforcement
Authorisation controls were evaluated using role-based and
scope-based access restrictions.

Table 5.3 Authorisation Validation Results

Authorization Scenario | Requests | Authorized | Denied ACE;:)a ¥
Correct Role & Scope 15,300 15,140 160 98.95
Correct Role, Wrong 7,100 0 7,100 100

Scope
Incorrect Role 5,400 0 5,400 100
Service Identity Misuse 3,200 26 3,174 99.19

Fine-grained scopes ensured strict least-privilege enforcement,
preventing role escalation and unauthorised cross-service access.

279 © 2024 Sravika Koukuntla. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC

BY NC ND). https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi.

Volume 3 Issue 5 [Sep- Oct] Year 2024

Figure 5.3 depicts the proportion of authorised versus denied requests,
emphasising effective access control enforcement.

Figure 5.3. Authorization Decisions Distribution

Denied
35%

Authorized
65%

5.5 API Gateway Security Impact
The API Gateway’s role was evaluated by comparing system
behaviour with gateway security enabled and disabled.

Table 5.4 Gateway Impact Analysis

5.6 Zero Trust Service-to-Service Communication
Zero-trust principles were validated by testing internal API calls
under compromised-service assumptions.

Table 5.5 Internal API Security Results

Scenario Requests | Allowed Blocked
Valid Service Credentials 12,400 12,280 120
Missing Service Token 6,300 0 6,300
Forged Service Identity 4,900 0 4,900
Excess Privilege Attempt 3,700 34 3,666

Even when a service was assumed compromised, zero-trust
enforcement prevented lateral movement across microservices.

5.7 Rate Limiting and Abuse Resistance
Rate limiting was tested using controlled traffic bursts to
simulate abuse scenarios.

Table 5.6 Rate Limiting Performance

Traffic Rate (req/sec) Allowed (%) Throttled (%) Sst Z‘;‘lftey
300 100 0 Stable
700 92 8 Stable
1,200 58 42 Stable
2,000 21 79 Stable

Metric Without Gateway With Gateway
Unauthopsed Reguests 349 4%
Reaching Services
Malformed Requests Blocked 29% 97%
Average End-to-End Latency 36 104
(ms)
Backend Error Rate 52% 1.6%

The gateway reduced backend exposure by approximately 88%,
while introducing only a modest latency increase.

Figure 5.4 compares unauthorised traffic reaching backend services with and
without gateway enforcement.

Figure 5.4. Effect of APl Gateway on Unauthoried Traffic
40%

30%
20%
10%

0%

Without Gateway

With Gateway

Uaanhortecd Reventage

B Blocked by Gateway [Passed to Services

Figure 5.5 shows increasing request throttling as traffic volume rises,
preventing service disruption.

Figure 5.5. Traffic Volume vs Throttling Ratio
80%

—& Allowed
& Throttled

70%

60%

40%

20%

0%
0 500

Traffic Rate (requests/sec)

1,000 2,000

5.8 Security Incident Reduction Analysis
Post-implementation logs were compared with baseline

measurements.
Table 5.7 Security Incident Comparison
. Before After
Incident Type Implementation Implementation

Unauthorized API Calls 410/week 62/week

Token Misuse Attempts 180/week 21/week
Internal Access Violations 95/week 9/week

Service Disruptions 3/month 0

280 © 2024 Sravika Koukuntla. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC

BY NC ND). https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi.

Volume 3 Issue 5 [Sep- Oct] Year 2024

5.9 Consolidated Results Summary

Security Dimension Outcome
Authentication Reliability High
Authorization Precision Very High
Zero Trust Enforcement Strong
Gateway Effectiveness High
Performance Impact Acceptable
Overall Security Posture Significantly Improved

The results demonstrate that secure API design, token-based
authentication, fine-grained authorisation, APl gateway
enforcement, and zero-trust communication can be effectively
implemented and validated at realistic operational scales. The
layered security architecture significantly reduced unauthorised
access, abuse, and internal policy violations while maintaining
stable performance.

6. DISCUSSION

The results obtained from this study provide strong empirical
evidence that secure API design and robust authentication
strategies can be effectively implemented in distributed
microservices systems without compromising performance or
scalability. By integrating security controls at multiple
architectural layers—including the API gateway, identity
management service, and individual microservices—the system
demonstrated significant resilience against common API-centric
threats while maintaining operational stability under realistic
workloads. One of the most important observations from the
authentication results is the high accuracy achieved in
distinguishing legitimate from malicious requests. As illustrated
in Figure 5.1, requests carrying valid tokens were consistently
accepted, while expired, tampered, replayed, and missing tokens
were overwhelmingly rejected. This confirms that token-based,
stateless authentication mechanisms such as OAuth 2.0 with
JWT are well-suited for microservices environments, where
session-based approaches would introduce unnecessary coupling
and scalability constraints. The small fraction of replay attempts
that bypassed initial validation under burst conditions highlights
a practical limitation of stateless tokens, reinforcing the
importance of short token lifetimes and additional contextual
checks in high-risk scenarios. Authentication latency analysis
further supports the feasibility of the proposed approach. Figure
5.2 shows that although latency increased with request rate, the
growth remained linear and predictable. Even at peak load, the
95th percentile latency stayed within acceptable thresholds for
enterprise APIs. This demonstrates that security controls, when
architected correctly, do not inherently degrade system
responsiveness. Instead, they introduce a manageable overhead
that is outweighed by the substantial reduction in security risk.
Authorisation results underscore the critical role of fine-grained
access control in enforcing the principle of least privilege. The
data presented in Table 5.3 and visualised in Figure 5.3 indicate
that role-based and scope-based authorisation effectively
prevented unauthorised access attempts, including role
mismatches and scope escalation. This is particularly significant
in microservices systems, where a compromised token or service

identity can otherwise lead to rapid lateral movement. The near-
total rejection of improper authorisation attempts confirms that
embedding authorisation checks directly into service logic—
rather than relying solely on perimeter controls—significantly
strengthens internal security posture.

The impact of the API gateway emerged as one of the most
influential factors in overall system security. As shown in Figure
5.4, enabling gateway-level enforcement dramatically reduced
the volume of unauthorised and malformed requests reaching
backend services. This demonstrates the gateway’s effectiveness
as a centralised policy enforcement point, capable of absorbing
and filtering hostile traffic before it propagates into the internal
service mesh. While the gateway introduced a modest increase
in end-to-end latency, the trade-off proved favourable, as
backend error rates and security incidents were substantially
reduced.

The evaluation of zero-trust service-to-service communication
revealed critical insights into internal security resilience. Results
from Table 5.5 show that even when internal services were
assumed to be compromised, unauthorised requests were largely
blocked due to mandatory authentication and authorisation at
each service boundary. This validates the zero-trust assumption
that internal network location should not be equated with trust.
In distributed microservices architectures—especially those
deployed in dynamic container orchestration environments—this
approach is essential to prevent internal breaches from escalating
into system-wide failures.

Rate limiting and abuse prevention results further demonstrate
the system’s robustness under stress. Figure 5.5 clearly illustrates
how throttling increased proportionally with traffic volume,
ensuring that excessive or malicious request bursts did not
overwhelm system resources. Importantly, service availability
remained stable even at high request rates, indicating that rate
limiting not only protects against denial-of-service conditions
but also contributes to overall system reliability. This reinforces
the notion that availability is a core component of security,
particularly in API-driven systems.

Taken together, these findings highlight the effectiveness of a
layered, defence-in-depth approach to API security in
microservices architectures. No single control—whether
authentication, authorisation, or gateway enforcement—was
solely responsible for the observed improvements. Instead, the
combination of these mechanisms created overlapping
protections that significantly reduced attack success rates and
operational disruptions. The results also demonstrate that secure
design principles, when applied from the outset, integrate
naturally with microservices paradigms rather than constraining
them.

7. CONCLUSION

This project successfully demonstrated the design,
implementation, and evaluation of secure API and authentication
strategies tailored for distributed microservices systems. By
adopting security-by-design principles and aligning them with
modern cloud-native architectures, the system achieved strong
protection against unauthorised access, privilege escalation,

281 © 2024 Sravika Koukuntla. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC

BY NC ND). https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi.

Volume 3 Issue 5 [Sep- Oct] Year 2024

internal trust abuse, and API abuse attacks, all while maintaining
acceptable performance and scalability.

The findings confirm that token-based authentication using
OAuth 2.0 and JWT provides a scalable and effective foundation
for identity verification in microservices environments. When
combined with fine-grained authorisation, API gateway
enforcement, encrypted communication, and zero-trust service
interactions, these mechanisms significantly strengthen the
overall security posture of distributed systems. The results also
demonstrate that realistic, medium-scale deployments can
achieve enterprise-grade security outcomes without the need for
hyperscale infrastructure.

A key takeaway from this study is that API security cannot be
treated as a single-layer concern. Instead, it must be embedded
across architectural boundaries, development practices, and
runtime enforcement mechanisms. The observed reduction in
security incidents and backend failures highlights the practical
value of layered defences and consistent policy enforcement.
Moreover, the predictable performance impact observed across
tests confirms that strong security controls and system efficiency
are not mutually exclusive.

Despite these successes, the study also reveals areas for future
enhancement. Replay attack resistance could be further
strengthened through token binding, contextual validation, or
adaptive risk scoring. Advanced monitoring techniques, such as
behavioural analytics and anomaly detection, could improve
early detection of sophisticated attacks. Additionally, integration
with service mesh technologies and automated policy
management could further enhance scalability and operational
consistency in larger deployments.

In conclusion, this project provides a practical and validated
framework for securing APIs in distributed microservices
systems. The methodologies, results, and insights presented here
can serve as a reference for organisations and researchers seeking
to balance agility, scalability, and security in modern cloud-
native architectures. By embedding security as a foundational
design principle, microservices-based systems can achieve both
innovation and resilience in an increasingly hostile digital
landscape.

REFERENCES
1. Rudrabhatla CK. Security design patterns in distributed
microservice architecture. arXiv Preprint. 2020;

arXiv:2008.03395.

2. Madupati B. Comprehensive approaches to API security
and management in large-scale = microservices
environments. SSRN Electron J. 2023.

3. Chandramouli R. Microservices-based application systems.
NIST Spec Publ. 2019;800-204.

4. de Almeida MG, Canedo ED. Authentication and
authorisation in microservices architecture: a systematic
literature review. Appl Sci. 2022;12(6):3023.

5. Mateus-Coelho N, Cruz-Cunha M, Ferreira LG. Security in
microservices architectures. Procedia Comput Sci.
2021;181:1225-1236.

10.

11.

12.

Dias WKAN, Siriwardena P. Microservices security in
action. New York: Simon and Schuster, 2020.

Jangam SK, Karri N, Muntala PSRP. Advanced API
security techniques and service management. Int J Emerg
Res Eng Technol. 2022;3(4):63-74.

Barabanov A, Makrushin D. Authentication and
authorisation in microservice-based systems: survey of
architecture patterns. arXiv Preprint. 2020;
arXiv:2009.02114.

Phanireddy S. Securing RESTful APIs in microservices
architectures: a comprehensive threat model and mitigation
framework. Int J Emerg Res Eng Technol. 2023;4(2):64—73.
Zdun U, Queval PJ, Simhandl G, Scandariato R,
Chakravarty S, Jelic M, et al. Microservice security metrics
for secure communication, identity management, and
observability. ACM Trans Softw Eng Methodol.
2023;32(1):1-34.

Xu R, Jin W, Kim D. Microservice security agent based on
APl gateway in edge computing. Sensors.
2019;19(22):4905.

Chatterjee A, Gerdes MW, Khatiwada P, Prinz A. Applying
Spring Security framework with TSD-based OAuth2 to
protect microservice architecture APIs. [EEE Access.
2022;10:41914-41934.

Creative Commons (CC) License
This article is an open-access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY 4.0) license.
This license permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

282 © 2024 Sravika Koukuntla. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC

BY NC ND). https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

