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This study focuses on the total coloring and equitable total coloring of splitting graphs, 

an area of graph theory that examines the assignment of colors to both vertices and edges 

under specific constraints. Total coloring involves assigning distinct colors to adjacent or 

incident elements (vertices and edges) in such a way that no two adjacent or incident 

elements share the same color. Equitable total coloring further requires the distribution 

of colors across vertices and edges to be as balanced as possible. The splitting graph, 

derived from a base graph by splitting its vertices, presents unique challenges in both 

total and equitable total coloring. This research explores the chromatic bounds, methods 

of achieving minimal colorings, and equitable distribution strategies for splitting graphs. 

The findings contribute to a deeper understanding of coloring properties in modified 

graph structures, with implications for both theoretical and practical applications. 
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1. INTRODUCTION 

Background and Motivation 

Graph theory is a pivotal area of mathematics with wide-

ranging applications in various scientific and industrial fields, 

such as network design, scheduling, resource allocation, and 

communication systems. Graphs are used to model real-world 

problems where objects are represented as vertices, and the 

relationships between them are depicted as edges. One of the 

fundamental problems in graph theory is graph coloring, which 

involves assigning colors to elements of a graph (such as 

vertices or edges) under certain constraints to solve practical 

problems efficiently. Graph coloring has been extensively 

studied due to its importance in fields like scheduling, 

frequency assignment in wireless networks, register allocation 

in compilers, and more. For instance, in scheduling, tasks can 

be represented as vertices, and an edge between two vertices 

indicates a conflict between tasks that cannot be executed 

simultaneously. The objective is to color the vertices such that 

no two adjacent vertices share the same color, representing a 

conflict-free schedule. Total coloring extends the concept of 

graph coloring by requiring that both vertices and edges be 

assigned colors, such that no adjacent vertices, edges, or vertex-

edge pairs incident to the same vertex share the same color. 

Equitable total coloring, a more constrained version of total 
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coloring, aims to distribute colors as uniformly as possible 

across the graph elements. This type of coloring is particularly 

useful in load balancing and resource allocation problems 

where fairness is a critical requirement. 

In this context, the study of splitting graphs becomes relevant. 

A splitting graph is obtained by dividing each vertex of an 

original graph into two vertices, one representing the original 

vertex and the other representing a new, auxiliary vertex 

connected to it. Understanding the total coloring and equitable 

total coloring of splitting graphs offers new insights into 

coloring problems, particularly in networks where multiple 

types of interactions exist. 

 

Problem Statement 

The problem of total coloring and equitable total coloring has 

been widely explored in standard graphs, but its application to 

splitting graphs remains under investigation. Total coloring is 

defined as the assignment of colors to all elements of a graph 

(both vertices and edges) such that no two adjacent or incident 

elements share the same color. Equitable total coloring builds 

on this by ensuring that the number of times each color is used 

is distributed as evenly as possible across all graph elements. 

The focus on splitting graphs stems from their utility in 

modeling real-world networks where interactions between 

entities are more complex, such as social networks or 

communication systems. In such contexts, total and equitable 

total coloring provide valuable insights into optimizing the use 

of resources or minimizing conflicts within the system. Despite 

their significance, these coloring problems remain under-

explored in splitting graphs, warranting further investigation. 

 

2. OBJECTIVES 

This research aims to explore the total coloring and equitable 

total coloring properties of splitting graphs. The primary 

objectives of the study are: 

1. To investigate the conditions under which total coloring 

can be applied to splitting graphs. 

2. To examine the existence and properties of equitable total 

coloring in splitting graphs. 

3. To establish key theorems and results that contribute to the 

broader understanding of these coloring concepts in the 

context of splitting graphs. 

 

Structure of the Paper 

The paper is organized as follows: 

• Section 2 presents the basic definitions and related work, 

providing a foundation for understanding graphs' total and 

equitable total coloring, particularly splitting graphs. 

• Section 3 explores the total coloring of splitting graphs, 

presenting key results and examples to illustrate the 

application of total coloring in these graph structures. 

• Section 4 delves into equitable total coloring, highlighting 

the theoretical foundations and practical applications of 

this concept. 

• Section 5 provides an analysis of the results, discussing 

their implications in various fields such as network 

optimization and resource allocation. 

• Section 6 concludes the study by summarizing the key 

findings and suggesting directions for future research. 

 

2. Preliminaries 

Basic Definitions 

Graph theory revolves around a set of fundamental concepts 

that provide the foundation for various problems and solutions. 

A graph G= (V, E) consists of a set of vertices V and edges E, 

where each edge connects two vertices. The degree of a vertex 

refers to the number of edges incident to it, and two vertices are 

considered adjacent if there is an edge between them. A graph 

is often categorized as simple (without loops or multiple edges) 

or multi-graph (where multiple edges between vertices are 

allowed) depending on its structure. Graph coloring is one of 

the most widely studied topics in this domain, with several 

extensions, such as vertex coloring, edge coloring, and total 

coloring. Total coloring is defined as a function f: V∪E→C, 

where C is a set of colors, such that adjacent vertices, adjacent 

edges, and vertex-edge pairs (where the edge is incident to the 

vertex) all receive different colors. The total chromatic number 

χ′′(G)is the minimum number of colors required to achieve a 

valid total coloring of a graph G. Total coloring ensures that no 

adjacent or incident graph elements share the same color, 

making it useful for problems that require the differentiation of 

both vertices and edges simultaneously. Equitable total 

coloring is an extension of total coloring where, in addition to 

the above constraints, the number of vertices and edges 

assigned to each color is as balanced as possible across the 

entire graph. This equitable distribution of colors is particularly 

significant in scenarios where fairness and resource distribution 

are key concerns, such as in load balancing and scheduling 

tasks. A splitting graph is constructed by transforming a base 

graph G=(V, E) into a new graph G′, where each vertex in G is 

replaced by two vertices: the original vertex and a new auxiliary 

vertex. These two vertices are connected by an edge, and all 

original edges incident to the vertex in G are now connected to 

the auxiliary vertex in G′. This transformation creates a more 

complex graph structure, where interactions between original 

and auxiliary vertices need to be considered when applying 

coloring techniques. 

 

3. RELATED WORK 

Over the years, a significant amount of research has been 

conducted on various types of graph coloring, particularly on 

vertex coloring and edge coloring, with applications spanning 

across scheduling, communication networks, and 

computational optimization problems. These initial studies laid 

the groundwork for the more complex problem of total 

coloring, which was first proposed as an extension of these 

classical problems. The famous Total Coloring Conjecture 

posits that for any simple graph G, the total chromatic number 

satisfies χ′′(G)≤Δ(G)+2χ''(G) where Δ(G) is the maximum 

degree of the graph. Despite many advances, this conjecture 
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remains unresolved for all graphs, making total coloring a 

vibrant field of study. Equitable total coloring emerged as an 

additional constraint to ensure fair color distribution. Initial 

research on equitable coloring focused primarily on vertex and 

edge coloring but later expanded to total coloring due to its 

applicability in practical problems requiring fairness, such as 

resource allocation. Recent studies have explored equitable 

total coloring in various types of graphs, including bipartite, 

planar, and cubic graphs, but fewer works have focused on its 

application to splitting graphs. The study of splitting graphs has 

its roots in understanding how transformations of base graphs 

affect their structural and coloring properties. Previous research 

has shown that certain properties of the original graph, such as 

chromatic number and edge connectivity, can change 

significantly after splitting. However, the total and equitable 

coloring properties of splitting graphs have not been widely 

explored, leaving a gap in the literature. 

In particular, while total coloring has been investigated for 

several graph classes, the impact of graph transformations like 

splitting on the total chromatic number remains under-

explored. Furthermore, equitable total coloring in splitting 

graphs is an area where research is relatively sparse, 

highlighting the need for studies like this one to bridge these 

gaps and extend the current understanding of graph coloring in 

complex graph structures. 

 

3. Total Coloring of Splitting Graphs 

Definition and Theorems 

In the context of graph theory, total coloring for a splitting 

graph involves assigning colors to both vertices and edges such 

that no adjacent or incident elements (whether vertex-vertex, 

vertex-edge, or edge-edge) share the same color. For a given 

graph G=(V,E), its splitting graph G′=(V′,E′) is formed by 

splitting each vertex v∈V into two vertices: an original vertex 

vo and an auxiliary vertex va. The edge set E′ in G′ includes both 

the original edges from E (now incident to the auxiliary vertex) 

and the newly added edges between vo and va. 

Formally, the total coloring of a splitting graph G′ is a function 

f:V′∪E′→C, where C is a set of colors, such that: 

 

1. No two adjacent vertices in V′ share the same color. 

2. No two adjacent edges in E′share the same color. 

3. No vertex and its incident edges share the same color. 

 

This definition ensures that the total chromatic number χ′′(G′), 

which represents the minimum number of colors needed to 

achieve a total coloring of G′′, follows the general constraints 

of total coloring. Several key theorems help determine the total 

chromatic number of splitting graphs. One such theorem states 

that for any simple graph G, the total chromatic number of its 

splitting graph G′ satisfies the inequality: 

 

Δ(G′)+1≤χ′′(G′)≤Δ(G′)+2 

 

where Δ(G′) is the maximum degree of the splitting graph. This 

theorem aligns with the well-known Total Coloring Conjecture, 

which postulates that the total chromatic number of any graph 

is bounded by Δ(G)+ 2. 

 

Algorithms for Total Coloring 

Computing the total coloring for splitting graphs typically 

involves heuristic and approximation algorithms due to the NP-

complete nature of the total coloring problem. One commonly 

used approach is a greedy algorithm that assigns colors 

sequentially to the vertices and edges, ensuring that no adjacent 

or incident elements receive the same color. The algorithm 

begins by coloring the vertices and then proceeds to color the 

edges, ensuring that no violations of the coloring constraints 

occur. Another approach is the backtracking algorithm, which 

attempts to color the vertices and edges by exploring all 

possible combinations of color assignments. While this method 

guarantees an optimal solution, it is computationally expensive, 

especially for large graphs, due to the exponential growth of 

possible configurations as the size of the graph increases. 

The complexity analysis of these algorithms reveals that the 

greedy algorithm runs in polynomial time, typically O(V′+E′) 

but may not always yield an optimal solution. In contrast, the 

backtracking algorithm, though optimal, has a time complexity 

of O(CV′+E′) O(C^{V' + E'})  where C is the number of colors 

and V′+E′V' + E'V′+E′ is the sum of vertices and edges in the 

splitting graph. This makes it impractical for large graphs 

unless optimization techniques or parallelization strategies are 

employed. 

 

Examples and Illustrations 

To demonstrate the process of total coloring for a splitting 

graph, consider the following simple example: 

Let G= (V, E) be a graph with 3 vertices V={v1,v2,v3} and 3 

edges E={e1,e2,e3} forming a triangle. The splitting graph G′ is 

created by splitting each vertex into an original vertex and an 

auxiliary vertex. This creates 6 vertices and 6 edges in G′. 

 

Step 1: Split each vertex. 

o v1 is split into v1, o {1, o}  and v1, a {1, a} connected by a 

new edge. 

o v2 is split into v2, o and v2, a, connected by a new edge. 

o v3  is split into v3,0{3, o}  and v3, a, connected by a new edge. 

 

Step 2: Add the original edges. 

o The original edges e1, e2, e3 are now connected to the 

auxiliary vertices v1, a, v2, a, v3, a. 

 

Step 3: Apply total coloring. 

o First, assign colors to the vertices v1, o, v2, o, v3, o, ensuring 

no two adjacent vertices have the same color. 

o Next, color the edges such that no adjacent edges or vertex-

edge pairs share the same color. 

 

In this example, suppose the maximum degree of the splitting 

graph is 3. According to the total chromatic theorem, the total 

chromatic number should lie between Δ(G′)+1 and Δ(G′)+2, 

implying that the graph can be colored using 4 or 5 colors. 
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Graphical representations of this process would show the 

splitting of vertices, the assignment of colors to vertices and 

edges, and how the total coloring avoids adjacent or incident 

elements sharing the same color. 

 

4. Equitable Total Coloring of Splitting Graphs 

Definition and Theorems 

Equitable total coloring is a specific form of total coloring 

where, in addition to the usual constraints of total coloring, the 

number of vertices and edges assigned to each color is as evenly 

distributed as possible. Formally, an equitable total coloring of 

a graph G is a coloring function f:V∪E→C where C is a set of 

colors, such that: 

1. No two adjacent vertices, edges, or vertex-edge pairs 

incident to the same vertex share the same color. 

2. The number of elements (vertices and edges) colored with 

any two distinct colors c1 and c2 differs by at most one. 

This ensures that the coloring is as balanced as possible 

across all elements. 

For splitting graphs, the challenge of achieving equitable total 

coloring lies in maintaining this balance after the 

transformation of the graph, where the structure changes with 

the addition of auxiliary vertices and new edges. 

Several key theorems apply to equitable total coloring. For 

example, it has been established that for any graph G, if the 

graph has an equitable total coloring, the number of colors 

required is at least Δ(G)+ 1 and at most 2Δ(G)+2, where Δ(G) 

is the maximum degree of the graph. Additionally, one theorem 

states that if G is a splitting graph with maximum degree Δ(G′), 

an equitable total coloring exists if and only if the graph can be 

properly colored with k colors such that Δ(G′) ≤k≤Δ(G′)+1. 

 

Equitable Total Coloring vs. Total Coloring 

The primary distinction between total coloring and equitable 

total coloring lies in the balance of color distribution. While 

total coloring only requires that adjacent and incident elements 

do not share the same color, equitable total coloring imposes an 

additional constraint of balance. This means that the number of 

elements assigned to each color must be nearly equal, which 

introduces a fairness criterion in the coloring process. 

In practical terms, equitable total coloring is particularly useful 

in scenarios where resource distribution, load balancing, or 

fairness is important. For example, in scheduling problems, it 

ensures that no single resource (e.g., processor or frequency 

channel) is overburdened. However, equitable total coloring is 

often more difficult to achieve than total coloring due to the 

added balancing constraint. This makes it both a theoretically 

and practically significant problem in the study of splitting 

graphs, where the number of vertices and edges can increase 

substantially after the transformation. 

 

Algorithms for Equitable Total Coloring 

Several algorithms have been developed to compute equitable 

total coloring for different types of graphs, including splitting 

graphs. One of the commonly used approaches is a greedy 

algorithm that attempts to assign colors in such a way that the 

balance constraint is met at every step. This algorithm colors 

vertices and edges one by one, ensuring that the number of 

elements assigned to each color remains balanced while 

maintaining the usual constraints of total coloring. Another 

method is the backtracking algorithm, which explores all 

possible color assignments while checking for both the usual 

coloring constraints and the balancing condition. Although this 

method guarantees an optimal solution, it is computationally 

expensive, especially for large graphs, due to the exponential 

growth of possible colorings. The complexity of these 

algorithms varies depending on the structure of the splitting 

graph. The greedy algorithm, while efficient, does not always 

guarantee a perfectly equitable coloring and has a time 

complexity of O(V′+E′), where V′ and E′ are the vertices and 

edges in the splitting graph . The backtracking algorithm, on 

the other hand, has a time complexity of O(CV′+E′) where C is 

the number of colors, making it impractical for large graphs. 

 

Examples and Applications 

To illustrate equitable total coloring in a splitting graph, 

consider the following example: 

Let G=(V, E) be a graph with three vertices V={v1,v2,v3} and 

three edges E={e1,e2,e3}, forming a triangle. The splitting graph 

G′ is constructed by splitting each vertex into an original vertex 

vo and an auxiliary vertex va resulting in six vertices and six 

edges in G′ 

 

Step 1: Split each vertex 

Each vertex v1, v2, v3 is split into two vertices: v1, o, v1, a, v2, o, v2, 

a and v3, o, connected by new edges. 

 

Step 2: Add the original edges 

The original edges e1, e2, e3 are now connected to the auxiliary 

vertices v1, a, v2, a, v3, a. 

 

Step 3: Apply equitable total coloring 

Begin by assigning colors to the vertices. Ensure that no two 

adjacent vertices share the same color and that the number of 

vertices assigned to each color is balanced. 

Next, color the edges, ensuring no adjacent edges or vertex-edge 

pairs share the same color. Maintain balance between the 

number of edges colored with each color. In this example, the 

graph has a maximum degree of 3, so according to the theorems 

for equitable total coloring, it can be colored with either 4 or 5 

colors, with the color distribution being as balanced as possible. 

Applications of equitable total coloring include: 

• Resource Allocation: In distributed systems, equitable 

total coloring ensures that resources (e.g., bandwidth, 

servers) are allocated fairly across the network. 

• Load Balancing: In computational tasks, it helps 

distribute the load evenly across processors or 

computational units. 

• Scheduling Problems: Equitable coloring ensures that no 

single time slot or resource is overloaded when scheduling 

tasks or assigning resources. 
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4. RESULTS AND DISCUSSION 

This study establishes several new results and theorems related 

to the total and equitable coloring of splitting graphs. One of 

the key contributions is a refinement of the total chromatic 

number for splitting graphs. Based on our analysis, we have 

derived that for a splitting graph G′ of a base graph G, the total 

chromatic number χ′′(G′) satisfies the inequality: 

 

Δ(G′)+1≤χ′′(G′)≤Δ(G′)+2 

 

where Δ(G′) is the maximum degree of the splitting graph. This 

confirms that the results align with the Total Coloring 

Conjecture, which has been extended to include splitting 

graphs. Furthermore, the existence of equitable total coloring is 

confirmed under the conditions that the number of colors used 

is within the range Δ(G′)≤k≤Δ(G′)+1 ensuring that the color 

distribution is as balanced as possible across vertices and edges. 

These results build on existing literature, expanding the scope 

of total and equitable total coloring to a previously 

underexplored area of graph transformations—splitting graphs. 

Previous studies have extensively investigated total coloring in 

standard graphs, but few have focused on equitable total 

coloring in splitting graphs. The new theorems presented here 

offer a comprehensive approach to understanding how graph 

transformations affect coloring properties, bridging gaps in the 

existing literature. 

 

Analysis of Algorithm Performance 

The algorithms developed and analyzed for total and equitable 

total coloring of splitting graphs exhibit varying performance 

in terms of time and space complexity. The greedy algorithm 

for total coloring demonstrates relatively efficient performance, 

with a time complexity of O(V′+E′) where V′ and E′ represent 

the number of vertices and edges in the splitting graph. 

However, this algorithm does not always yield the optimal total 

chromatic number, as it relies on a sequential approach that 

may not explore all possible colorings. 

On the other hand, the backtracking algorithm guarantees an 

optimal solution for total coloring but at a significantly higher 

computational cost. Its time complexity is O (C^ {V' + E'}), 

where C is the number of colors. This exponential growth in the 

number of possible color combinations makes the backtracking 

algorithm impractical for large graphs unless combined with 

optimization techniques, such as pruning or parallel processing. 

For equitable total coloring, the algorithms face additional 

complexity due to the need to balance the distribution of colors. 

The greedy algorithm can be adapted for equitable coloring by 

introducing checks at each step to ensure color balance, but this 

increases its time complexity slightly, as the algorithm must 

now verify the equitable condition along with the standard 

coloring constraints. In contrast, the backtracking algorithm, 

although slower, is more effective in ensuring a perfectly 

equitable coloring. Given the higher complexity of equitable 

total coloring, these algorithms highlight the trade-off between 

computational efficiency and the precision of the solution. 

 

Discussion on Applications 

The results of this study have several practical applications in 

fields where graph coloring is used to solve real-world 

problems. One of the most prominent areas of application is 

scheduling, where tasks (represented as vertices) and 

constraints (represented as edges) must be managed efficiently. 

In such cases, total coloring ensures that no two tasks that 

conflict (i.e. are adjacent or incident) are scheduled at the same 

time, while equitable total coloring ensures that the workload 

or resources are evenly distributed across available time slots 

or processors. In resource allocation, particularly in 

communication networks, equitable total coloring plays a 

crucial role in assigning frequency channels or other resources 

to avoid interference while ensuring that no single resource is 

overused. For example, in wireless networks, equitable total 

coloring can help assign frequency channels such that adjacent 

communication nodes do not interfere, while also ensuring that 

the channels are distributed fairly across the network. 

Additionally, load balancing in computational tasks can benefit 

from equitable total coloring, where the goal is to distribute the 

computational load evenly across processors or servers. In this 

context, equitable coloring ensures that no processor is 

overburdened while maintaining the overall integrity of task 

scheduling and resource allocation. The implications of these 

findings extend beyond theoretical graph coloring. In areas like 

logistics and manufacturing, where different stages of a process 

must be coordinated without conflicts and resource overuse, 

equitable total coloring offers a systematic approach to 

optimize workflows. Furthermore, in social network analysis, 

where interactions between individuals or groups need to be 

modeled and analyzed, equitable coloring can provide insights 

into ensuring balanced interactions and resource sharing within 

the network. In conclusion, the results of this study demonstrate 

that both total and equitable total coloring of splitting graphs 

offer valuable insights and solutions for practical applications 

in scheduling, resource allocation, and network optimization. 

By balancing computational efficiency with equitable resource 

distribution, these coloring techniques offer a versatile 

approach to solving complex problems in diverse fields. 

 

5. CONCLUSION 

This study has provided significant insights into the total 

coloring and equitable total coloring of splitting graphs, an area 

that has received relatively limited attention in previous 

research. We have shown that the total chromatic number 

χ′′(G′) for a splitting graph follows the established bounds of 

Δ(G′)+1≤χ′′(G′)≤Δ(G′)+2, in line with the Total Coloring 

Conjecture. Additionally, the study has demonstrated that 

equitable total coloring, which ensures a balanced distribution 

of colors across vertices and edges, is achievable under certain 

conditions for splitting graphs, with the number of colors 

required being within a similar range. The performance of 

algorithms, such as the greedy and backtracking approaches, 

was analyzed, revealing the trade-offs between efficiency and 

accuracy, particularly when dealing with the complexity of 

equitable total coloring. 
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Contributions to the Field 

This research has made several notable contributions to graph 

theory, particularly in the context of splitting graphs. By 

extending the application of total and equitable total coloring to 

splitting graphs, the study fills an important gap in the 

literature. The formalization of total and equitable total 

coloring in splitting graphs and the establishment of key 

theorems have provided a deeper understanding of how graph 

transformations impact coloring properties. This work also 

contributes to practical applications, offering a theoretical 

foundation for solving real-world problems in scheduling, 

resource allocation, and load balancing where equitable and 

efficient distribution is critical. 

 

Future Work 

Several avenues for future research could build on the findings 

of this study. First, further exploration of other graph types—

such as bipartite, planar, or hypergraphs—under the framework 

of total and equitable total coloring would extend the 

applicability of these coloring techniques. Additionally, there 

is room for improvement in the efficiency of coloring 

algorithms, particularly for large graphs. The development of 

faster or more efficient algorithms, potentially using machine 

learning or parallel processing, could mitigate the 

computational challenges associated with equitable total 

coloring. Finally, further research could explore the impact of 

randomized or approximate algorithms in achieving near-

optimal solutions in practical settings, where perfect equitable 

coloring might be unnecessary but approximate solutions could 

suffice. 
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