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ABSTRACT Manuscript Information 
 

Deviating from the traditional framework to prove the existence and uniqueness of a 

fixed point and replacing the fixed number in the Banach contraction principle with a 

function that has its conditions is one of the most difficult challenges facing studies 

concerned with the fixed point, which researchers took on recently.  Success in such 

studies has a wide applied impact in many areas of mathematics, reflecting positively on 

various applied sciences. In this study, we establish new fixed point theorems for 

contractive mapping in a complete metric space using some helping functions via Caristi-

type. 
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1. INTRODUCTION  

Banach contraction principle is a fundamental theorem in fixed-

point theory. Due to the wide range of applications of fixed 

point theory, the Banach principle has undergone many 

extensions and generalizations, see [1,7,9,10]. The most notable of 

these extensions is what Caristi introduced in 1976 in [4,5]  he 

employed a helping function to proof the exist and uniqueness.  

Du [6] has obtained a helping function (semi-lower continuous 

function) to support Caristi's fixed-point theorem. The fixed 

point theorem by Caristi's type is the subject of numerous 

recent publications, among these recent studies are [2,3,11]. This 

paper employs contractive mapping in the Banach metric space 

using a new helping function to obtain some new conclusions 

along the lines of the Caristi type. This paper is inspired by 
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some new work on the extension of the Banach contraction 

principle.  

 

Definition 1.1 [6] A semi lower continuous function  𝜉 at  𝑢0, in 

a metric space 𝑈 can be expressed as  for each  

 

𝑢, 𝑢0 ∈ 𝑈  then lim
𝑢→𝑢0

𝑠𝑢𝑝 𝜉𝑢 ≤ 𝜉𝑢0. 

 

Theorem 1.1 [12] Let (𝑈, 𝜎) be a complete metric space and 𝜉   
satisfies Definition 1.1.  Suppose that 𝜁 is a Caristi type 

mapping on 𝑈 dominated by 𝜉; that is, for each  𝑢 ∈ 𝑈  satisfies 

 

                  𝜎(𝑢, 𝜁𝑢) ≤ 𝜉𝑢 − 𝜉(𝜁𝑢). .                                   (1.1) 

                                                        

Then 𝜁 has a fixed point in  𝑈.   
 

In this study, we derive new fixed-point theorems for 

contractive mapping in a complete metric space via the Caristi 

type, using new helping functions. 

 

2. MAIN RESULTS. 

Theorem 2.1 Let  𝜁: 𝑈 → 𝑈 be a contractive mapping on a 

complete metric space(𝑈, 𝜎). Suppose there exists a function  

𝜂: 𝑈 → (0, +∞) such that  

 

                           𝜂𝑢 = 𝜎(𝜁𝑢, 𝑢),                                           (2.1) 

 

For all 𝑢 ∈ 𝑈, satisfies  

 

𝜎(𝜁𝑢, 𝜁𝑣) ≤ (𝜂𝑢 + 𝜂𝑣) − (𝜂(𝜁𝑢) + 𝜂(𝜁𝑣)),                       (2.2) 

 

For all  𝑢, 𝑣 ∈ 𝑈 and 𝑢 ≠ 𝑣.  Then 𝜁 has a unique fixed point.  

 

Proof.  For all  𝑛 ∈ ℕ, consider 

 

     𝑢𝑛+1 = 𝜁𝑢𝑛.                                                                      (2.3) 

 

Now, 

𝜎(𝑢𝑛, 𝑢𝑛+1) =  𝜎(𝜁𝑢𝑛−1, 𝜁𝑢𝑛) ≤ (𝜂𝑢𝑛−1 + 𝜂𝑢𝑛) − (𝜂𝜁𝑢𝑛−1 +
                                                   𝜂𝜁𝑢𝑛))                                      (2.4) 

 

                     = 𝜂𝑢𝑛−1 − 𝜂𝑢𝑛+1.   
Using (2.3), 

 

𝜎(𝑢𝑛, 𝑢𝑛+1) ≤ 𝜎(𝜁𝑢𝑛−1, 𝑢𝑛−1) − 𝜎(𝜁𝑢𝑛+1, 𝑢𝑛+1) 

𝜎(𝑢𝑛, 𝑢𝑛+1) +  𝜎(𝑢𝑛+1, 𝑢𝑛+2) ≤  𝜎(𝑢𝑛−1, 𝑢𝑛).              (2.5)                   

 

And, 

 

                𝜎(𝑢𝑛, 𝑢𝑛+2) < 𝜎(𝑢𝑛−1, 𝑢𝑛).                                 (2.6) 

 

From [2], 𝜂𝑢 is continuous and limited down bounded indeed 𝜁 

is contractive. Then from (2.6) we conclude that  𝑢𝑛 is 

decreasing to some point in  𝑈, so there exists 𝜔 ∈ 𝑈 such that  

for all  𝑢 ∈ 𝑈, 

                     𝜂𝜔 ≤ 𝜂𝑢.                                          (2.7) 

                     

Since,  𝑈 is a complete space.  So, {𝑢𝑛} is a convergent 

sequence.   Let  𝑢𝑛 → 𝜔,   𝑛 → ∞, for all 𝑛 ∈ ℕ. Then𝑢𝑛𝑘
→ 𝜔, 

{𝑢𝑛𝑘
} ⊆ {𝑢𝑛}.  

 

Now, we will proof the existence of fixed point of  𝜁  in  𝑈. 
clearly, 𝜁 is continuous, since 𝜁 is contractive [8], then 

 

                    𝜁 ( lim
𝑛→∞

𝑢𝑛𝑘
) = 𝜁𝜔, 𝑘 → ∞.                         (2.8) 

         

Therefore 𝜔 is a fixed point of  𝜁 in 𝑈. 
 

To proof the uniqueness of a  fixed point suppose there is 

another point   𝜛 ∈ 𝑈 such that 𝜔 ≠ 𝜛 and  𝜁𝜛 = 𝜛, for  all 

  𝜔, 𝜛 ∈ 𝑈. 
 

Therefore, 

 

𝜎(𝜔, 𝜛) = 𝜎(𝜁𝜔, 𝜁𝜛) ≤ (𝜂𝜔 + 𝜂𝜛) − (𝜂(𝜁𝜔) + 𝜂(𝜁𝜛)).(2.9)  

                = (𝜂𝜔 + 𝜂𝜛) − (𝜂𝜔 + 𝜂𝜛).  
 

Hence,  𝜔 = 𝜛 and there is a unique fixed point of 𝜁.  
 

Theorem 2.2 In theorem 2.1, if for some 𝜄 ∈ 𝑁 and  𝜁𝜄 is a 

contractive. Then  𝜁 has a unique fixed point.  

Proof.  Since  𝜁𝜄  is   contractive, then 𝜁𝜄 is continuous. So, in a 

similar proof of theorem 2.1,  𝜁𝜄 has a unique fixed point. 

Suppose that the fixed point is  𝜔 ∈ 𝑈. We need to prove that  

𝜔 ∈ 𝑈 is a unique fixed point of  𝜁. For that, we assume 𝜁𝑟𝜔 ≠
𝜔,   ∀ 𝑟 = 1,2, … , 𝜄 − 1.    
 

 Let, for all  𝜔 ≠ 𝜛 ∈ 𝑈 

𝜁𝑟𝜔 = 𝜛                                                                             (2.10) 

 

Then, 

 

𝜎(𝜁𝑟𝜔, 𝜔) = 𝜎(𝜁𝑟𝜔, 𝜁𝑟𝜔) = 𝜎(𝜁(𝜁𝑟−1𝜔, 𝜁( 𝜁𝜄−1𝜔)).      (2.11)                             

 

So, by (2.1),  

 

 

𝜎(𝜁𝑟𝜔, 𝜔) ≤ (𝜂(𝜁𝑟−1𝜔) + 𝜂(𝜁𝑚−1𝜔)) − (𝜂(𝜁(𝜁𝑟−1𝜔) +

                                     𝜂(𝜁(𝜁𝜄−1𝜔)).  

= 𝜂(𝜁𝑟−1𝜔) + 𝜂(𝜁𝜄−1𝜔) − 𝜂(𝜁𝑟𝜔) − 𝜂(𝜁𝜄𝜔). 
              = 0.    
 

By (2.10) and 𝜄 > 1. this implies that 𝜁𝑟𝜔 = 𝜔    ∀ 𝑟 =
1,2, … , 𝜄 − 1. 

 

Hence,  𝜔  is a fixed point of   𝜁.  now, we will prove that 𝜔 is 

a unique fixed point.  So, suppose 𝑤 ∈ 𝑈 is such that 𝑤 ≠ 𝜔   

and   𝜁𝑤 = 𝑤. Therefore,  
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𝜎(𝜔, 𝑤) = 𝜎(𝜁𝜔, 𝜁𝑤) ≤ (𝜂𝜔 + 𝜂𝑤) − (𝜂(𝜁𝜔) + 𝜂(𝜁𝑤)) = 0. 

 

Theorem 2.3 Let 𝜁: 𝑈 → 𝑈 be a contractive mapping on a 

complete metric space 𝑈 and there exists a function   𝜂: 𝑈 →
(0, ∞) such that (2.3) is satisfied. If, 

 

𝜎(𝜁𝑚𝑢, 𝜁𝑛𝑣) ≤ (𝜂𝑢 + 𝜑𝑣) − (𝜂(𝜁𝑚𝑢) + 𝜂(𝜁𝑛𝑣)),           (2.12) 

 

For all  𝑢, 𝑣 ∈ 𝑈,   𝑢 ≠ 𝑣 , and   𝑚, 𝑛 ∈ 𝑁,   then 𝜁 has a unique 

fixed point in 𝑈. 

 

Proof.  Since this theorem's proof is similar to earlier theorems, 

it has been omitted. 

 

Example 2.1 Consider  𝜁𝑢 = 𝑢2 defined on 𝑈 = [0,1] and take  

𝜂𝑢: (−∞, ∞)  →  (0, ∞) be a lower semi continuous function 

defined by  

  𝜂𝑢 = {
0,   𝑢 ≤ 0
1,    𝑢 > 1

                                          (2.13) 

 

So, for all   𝑢, 𝑣 ∈ 𝑈, such that  𝑢 ≠ 𝑣.    

 

We have, 

𝜎(𝜁𝑢, 𝜁𝑣) = 𝜎(𝑢2, 𝑣2) 

= (𝑢 + 𝑢) 𝜎(𝑢, 𝑢). 

< 𝜎(𝑢, 𝑢). 

 

Thus, for 𝜁 is contractive mapping and by (2.1), (2.3) we get, 

 

𝜎(𝜁𝑢, 𝜁𝑣) ≤ (𝜂𝑢 + 𝜂𝑣) − (𝜂(𝜁𝑢) + 𝜂(𝜁𝑣).  

= 𝜎(𝜁𝑢, 𝑢) + 𝜎(𝜁𝑣, 𝑣) − [𝜎(𝜁(𝜁𝑢, 𝜁𝑢) + 𝜎(𝜁(𝜁𝑣, 𝜁𝑣)]. 
= 𝜎(𝑢2, 𝑢) + 𝜎(𝑣2, 𝑣) − 𝜎(𝑢4, 𝑢2) − 𝜎(𝑣4, 𝑣2).    

= 𝜎(𝑢2, 𝑢) − 𝜎(𝑢4, 𝑢2) + 𝜎(𝑣2, 𝑣) − 𝜎(𝑣4, 𝑣2). 

   = 𝜎(𝑢, 𝑢4) + 𝜎(𝑣, 𝑣4).                                                   (2.14) 

 

So,  

 

𝜎(𝜁𝑢, 𝜁𝑣) ≤ 𝜎(𝑢, 𝜁2𝑢) + (𝑣, 𝜁2𝑣).                                    (2.15) 

 

We have two cases: 

I. If  𝑢 ≠ 𝑣  then (3.5) is satisfied. 

II. If   𝑢 = 𝑣,   then    𝜁𝑢 = 𝜁𝑣 which implies that 𝑢 is the 

fixed point of 𝜁.  Hence,   (2.15) is also satisfied. 
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