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Abstract Publication Information 

A viral disease due to a coronavirus was reported in a famous city of China, Wuhan, and spread in to 

all over the world which rapidly changing into an exploding pandemic and posing a severe threat to 

human health all over the world.   There are not sufficient treatment options for the management of 

this global disease, and a shortage of vaccines. Important aspects that help to defeat coronavirus 

infection seem to be having a healthy, strong, and resilient immune system. Nutrition and metabolic 

disorders, such as obesity, cardiovascular disease and diabetes, play an important role in the 

community health condition in general and especially during this new pandemic. There seems to be a 

vast impact of lifestyle, metabolic disorders, and immune status on coronavirus disease 2019 (COVID-

19). For this reason, it is important to consider the impact of lifestyle and the consumption of well-

defined healthy diets during the pandemic. 

In this review, we summarise recent findings on the effect of nutrition on COVID-19 susceptibility 

and disease severity and treatment. Understanding how specific dietary features might help improve 

public health strategies to reduce the rate and severity of COVID-19. 
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1. INTRODUCTION 

The appearance of SARS-CoV-2 in late 2019 sparked an 

infectious disease outbreak known as COVID-19 that 

rapidly escalated into a global health emergency [1, 2]. By 

mid-2021, the pathogen and its evolving variants had 

reached more than 165 million people worldwide, 

claiming roughly 3.42 million lives [3]. Beyond infection 

tallies and fatalities, the containment strategies deployed, 

ranging from home confinement and mobility bans to 

complete societal shutdowns, generated cascading 

economic, psychological, and social harms, eroding 

population well-being and disrupting routine care 

delivery [4]. 

Individual clinical experiences with SARS-CoV-2 span 

an exceptionally wide spectrum. Some infected persons 

show no symptoms or only transient upper-airway 

complaints, whereas others progress to fulminant viral 

lung disease featuring high fever, persistent cough, 

laboured breathing, diffuse radiographic opacities, and 

life-threatening hypoxemia necessitating invasive 

respiratory support [5-8]. Roughly one in five cases 

advances to critical respiratory complications, with 

aggregate mortality approaching 2.3% during that phase 

of the pandemic [3]. Crucially, tissue tropism is not 

confined to pulmonary structures; the virus invades renal, 

enteric, ocular, cardiac, and neural compartments, 

amplifying both immediate clinical complexity and post-

acute sequelae [5-8]. 

Mental and physical conditioning are foundational to 

immune stability and adaptability, which together 

determine whether an individual can generate a 

coordinated antiviral defence [9, 10]. Among host 

characteristics amenable to intervention, excessive body 

fat and impaired glucose regulation stand out as powerful 

predictors of adverse COVID-19 trajectories [11]. Adipose 

tissue dysfunction fosters metabolic turbulence, 

hormonal perturbations, chronic subacute inflammation, 

and compromised leukocyte performance [12]. Physical 

inactivity compounds these effects, driving progression 

toward insulin resistance and metabolic syndrome 

conditions that mechanistically converge on elevated 

ACE2 receptor availability, the key molecular gateway 

exploited for viral cell entry [13]. 
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Food intake patterns exert substantial leverage over these 

metabolic derangements. Habitual consumption of 

energy-dense, nutrient-poor foods dominated by 

saturated lipids and processed grains, coupled with 

insufficient fibre and phytochemical intake, promotes 

oxidative stress and inflammatory signalling. 

Conversely, nutrient-adequate eating supports immune 

coordination and reinforces barriers against microbial 

invasion [14]. Undernutrition disturbs epigenetic 

programming, impairs intracellular communication 

cascades, and destabilises immunoregulatory networks, 

collectively raising infection risk and worsening clinical 

outcomes. Poor-quality diets, therefore, undermine 

antimicrobial preparedness and amplify vulnerability to 

serious SARS-CoV-2 illness. 

Food security and dietary adequacy are unevenly 

distributed and reflect broader sociocultural and 

economic gradients that correlate with COVID-19 

burden [15]. Within the United States, Indigenous and 

Hispanic communities have experienced 

disproportionately high admission rates compared to 

non-Hispanic White populations, disparities partially 

rooted in longstanding nutritional inequities and elevated 

obesity prevalence [15, 16]. Religious and cultural 

observances also intersect with metabolic health. In 

resource-limited Islamic-majority settings, the annual 

Ramadan fast can constrain meal timing and curtail 

physical exertion [17]. While diminished activity may 

transiently compromise immune vigilance, controlled 

energy restriction and meal consolidation have 

demonstrated favourable effects on glycemic control, 

antioxidant capacity, and inflammatory tone [17]. 

In sum, dietary quality and body composition critically 

shape population resilience during the COVID-19 era. 

This review consolidates emerging data on the 

bidirectional relationship between nutritional status and 

disease expression, highlighting how eating behaviours 

and metabolic phenotypes modulate host immunity 

against SARS-CoV-2. Clarifying which nutritional 

practices intensify or attenuate illness progression will 

guide strategic public-health initiatives designed to curb 

transmission and accelerate convalescence. 

 

Pathogenesis of COVID-19 disease 

SARS-CoV-2 principally attacks respiratory epithelia, 

though extrapulmonary organs are frequently involved. 

The landmark Wuhan case cohorts documented classic 

lower-airway infection signs: elevated body temperature, 

nonproductive cough, and shortness of breath [6]. 

Concurrent systemic features—including cephalgia, 

vertigo, profound fatigue, nausea, and loose stools—

were also prevalent [18]. Despite its respiratory signature, 

COVID-19 can persist within intestinal tissue, 

establishing gastrointestinal reservoirs [19], and 

neurologic abnormalities have emerged in a sizable 

fraction of inpatient populations [20]. 

Respiratory pathology is highly heterogeneous, 

encompassing subclinical carriers through to profound 

oxygen desaturation and acute respiratory distress 

syndrome (ARDS) [8, 21]. Early Chinese data revealed that 

symptom-to-ARDS intervals could contract to nine days, 

underscoring the potential for precipitous decline [6]. 

ACE2 serves as the principal host entry portal for SARS-

CoV-2 (22), with molecular investigations confirming 

tight affinity between the viral spike glycoprotein and 

this membrane-bound receptor [23-25]. Tissue-level ACE2 

abundance is prominent in pulmonary, cardiac, intestinal, 

renal, and urinary structures [26], and is especially 

concentrated at the luminal interface of alveolar lining 

cells [27-28]. This anatomic distribution aligns with the 

observation that early parenchymal injury clusters in 

peripheral lung zones [29]. 

Host genetic architecture influences susceptibility to 

infectious agents, and primary immunodeficiencies often 

dictate clinical trajectories [30]. Outcome heterogeneity in 

COVID-19 likely reflects underlying genetic 

predispositions as well. Chronological age, biological 

sex, and pre-existing morbidities such as elevated blood 

pressure, dysglycemia, airway disease, and cardiac 

pathology consistently correlate with escalated severity 

and lethality, marking them as pivotal risk determinants 
[31]. 

Morbidity and death from COVID-19 climb steeply in 

older adults and individuals burdened by chronic illness, 

including malignancy and atherosclerotic disorders. 

Nonetheless, sporadic life-threatening presentations 

occur even among juveniles and previously robust 

patients [32]. The interplay of vulnerability factors and 

outcome modulators in SARS-CoV-2 infection remains 

incompletely mapped. Heightened disease severity has 

been tied to dysregulated immune activation and ACE2-

mediated viral tropism, though additional host genetic 

elements governing receptor expression and entry 

cofactor function continue to surface [33]. 

Competent immune surveillance is indispensable for 

repelling pathogenic microbes. Yet COVID-19 often 

disrupts immunological equilibrium, curtailing the 

capacity to execute coordinated antimicrobial responses 
[34]. Uncontrolled release of pro-inflammatory cytokines 

and chemokines, the so-called "cytokine storm", 

precipitates widespread tissue injury characterised by 

fluid extravasation, endothelial barrier breakdown, and 

microthrombi formation. This exaggerated inflammatory 

cascade underlies the acute lung injury (ALI) and ARDS 

phenotypes observed in critically ill patients, frequently 

culminating in death. 

Male patients face an elevated risk of severe 

manifestations and unfavourable outcomes relative to 

females. Mechanistic clarity remains elusive, though 

candidate explanations include chromosomal effects, 

differential modulation by androgenic and estrogenic 

hormones, and sex-linked variation in innate immune cell 

repertoires, including mast cell behaviour [35]. 

Intriguingly, men with prostate cancer receiving 

androgen-deprivation therapy, a regimen that curtails 

testosterone signalling fueling neoplastic growth, 

demonstrated markedly lower SARS-CoV-2 infection 

rates [36]. This finding implies that testosterone 
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suppression may confer a protective effect. Emerging 

data also suggest sex-specific variation in pattern-

recognition receptor expression and viral entry 

machinery. While definitive evidence for dimorphic 

ACE2 and associated protease expression remains 

pending, these remain plausible mechanistic contributors 

to observed sex-based outcome disparities in COVID-19. 

 

Physical inactivity, malnutrition, and COVID-19 

Adequate nutrient provision constitutes a cornerstone of 

host defence mechanisms operative against diverse 

microbial threats [14]. Conversely, nutritional deficits and 

poor-quality eating patterns markedly erode 

immunological readiness, thereby amplifying infectious 

disease vulnerability [37]. Confinement protocols enacted 

during the pandemic triggered concurrent declines in 

locomotor activity and elevations in energy consumption, 

a dual phenomenon of particular concern given that each 

factor independently escalates COVID-19 severity 

trajectories [38]. These alterations prove especially 

detrimental among individuals in the fifth decade of life 

and beyond, where insufficient physical engagement 

compromises cardiac functional reserve, alters somatic 

composition, destabilises metabolic equilibria, reduces 

skeletal muscle capacity, disrupts hemostatic balance, 

and weakens immune surveillance networks [39]. Notably, 

exercise of moderate intensity augments immune 

coordination mechanisms and associates with diminished 

upper airway infection frequency, whereas training loads 

exceeding physiological thresholds may paradoxically 

attenuate protective responses [39]. Figure 1 depicts the 

bidirectional relationships linking movement behaviours 

and nutritional choices to immune system performance. 

Insufficient nutrient availability can dramatically 

modulate multiple phases of SARS-CoV-2 pathogenesis 

from initial host susceptibility through acute disease 

progression, convalescent recovery kinetics, and 

potential reinfection susceptibility across diverse patient 

populations [40]. Dietary regimens characterised by 

elevated saturated lipid content, simple carbohydrate 

dominance, and deficits in complex polysaccharides and 

antioxidant phytonutrients perturb the functional 

equilibrium between innate recognition systems and 

adaptive memory responses, thereby compromising 

antiviral defence architecture [41]. Furthermore, these 

nutritional profiles demonstrate robust correlations with 

increased prevalence of established COVID-19 risk 

determinants and extended post-infectious recuperation 

intervals [42]. Chronic consumption of saturated fatty 

acid-enriched foods persistently activates innate immune 

signalling cascades while concurrently suppressing 

adaptive immune arm functionality [41, 43]. 

Mechanistically, saturated fatty acid abundance 

generates lipotoxic intracellular microenvironments that 

engage toll-like receptor 4 (TLR4) on macrophage and 

neutrophil plasma membranes, perpetuating pro-

inflammatory signalling networks and cytokine 

biosynthesis [41, 43]. Nutritional composition additionally 

regulates TLR9 receptor expression densities and the 

bioavailability of endogenous TLR9-activating 

molecular patterns, a pathway hypothesised to contribute 

to accelerated clinical deterioration trajectories in 

vulnerable COVID-19 patient subsets [44]. Lipid-enriched 

dietary patterns elevate TLR9 abundance within visceral 

adipose tissue compartments across both rodent 

experimental systems and human study populations [45]. 

Such nutritional exposures stimulate excessive nucleic 

acid and associated protein antigen generation, thereby 

intensifying metabolic inflammatory responses through 

enhanced macrophage activation states and plasmacytoid 

dendritic cell (pDC) proliferation within hepatic 

parenchyma [46]. Preclinical animal investigations 

additionally demonstrate that sustained high-fat 

nutritional regimens promote macrophage tissue 

infiltration into pulmonary interstitium and alveolar 

airspaces, a phenomenon that mirrors the inflammatory 

alveolar epithelial pathology and tissue injury patterns 

documented in obese or metabolically compromised 

COVID-19 patient cohorts [47]. Furthermore, excessive 

carbohydrate and lipid intake potentiates oxidative 

cellular stress responses, restricting lymphocyte 

proliferative capacity and differentiation processes while 

simultaneously triggering programmed death signalling 

pathways, collectively attenuating adaptive antiviral 

immune competence [48]. In influenza-challenged animal 

experimental platforms, subjects maintained on lipid-

dense nutritional protocols exhibited exacerbated 

pulmonary tissue destruction patterns and protracted 

adaptive immune response initiation, accompanied by 

memory T-lymphocyte functional impairment and 

diminished antigen recognition efficiency alongside 

compromised viral clearance capacity [48]. The precise 

molecular mechanisms driving enhanced pulmonary 

damage remain under investigation but likely encompass 

multiple apoptotic and regulated necrotic cellular death 

programs [49-52]. Given these mechanistic insights, elderly 

populations, individuals harbouring chronic comorbid 

medical conditions, and persons demonstrating 

established COVID-19 vulnerability factors should 

exercise judicious caution regarding the adoption of 

nutrient-deficient dietary patterns that potentially 

amplify disease severity outcomes. In contrast, 

nutritionally balanced intake protocols delivering 

sufficient macronutrient quantities, micronutrient 

adequacy, vitamin sufficiency, essential mineral 

availability, and potentially beneficial commensal 

microorganisms, including probiotic species, can support 

sustained immune functional capacity and facilitate 

restoration of compromised immune networks [53]. 

Protein nutritional adequacy, vitamin sufficiency status, 

and mineral homeostatic balance have historically been 

acknowledged as pivotal modulators of health resilience 

and infection resistance phenotypes through their 

regulatory influences on immune system equilibrium [54]. 

The immune-enhancing characteristics attributed to 

traditional botanical therapeutic preparations, 

exemplified by Shuang-Huang-Lian oral liquid 

formulations employed for upper respiratory tract 
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infection management, may partially derive from specific 

bioactive peptide constituents and additional 

phytochemical components [2, 55]. A contemporary 

comprehensive meta-analytic evaluation examining 

nutritional status influences on immune response 

capacities directed against respiratory viral challenges 

concluded that vitamin and mineral nutritional adequacy 

critically determines host capacity for mobilising 

efficacious antiviral defence mechanisms and 

demonstrates direct correlative associations with 

infection severity outcome patterns [56]. 

Current global evidence highlights a consistent 

relationship between micronutrient adequacy and 

COVID-19 clinical outcomes, including survival rates. 

Low serum prealbumin concentrations, for instance, have 

been linked to more severe cases of acute respiratory 

distress syndrome in SARS-CoV-2–infected patients [57]. 

Essential micronutrients such as vitamin A, B-complex 

vitamins, vitamin C, vitamin D, vitamin E, and key trace 

minerals play crucial roles in coordinating immune 

signalling, antioxidant defence, and inflammatory 

regulation [58, 59]. Insufficient levels of these nutrients can 

compromise immune competence and elevate 

susceptibility to viral infections, including SARS-CoV-2 
[60]. Some studies also report immunomodulatory and 

protective benefits from natural bioactive compounds of 

plant origin. 

 

 
 

In summary, an individual’s nutritional status influences 

not only the risk of contracting COVID-19 but also the 

potential severity and recovery trajectory of the disease. 

The subsequent section further explores the specific roles 

of proteins, vitamins, and minerals in respiratory viral 

infections, offering potential insights for preventive and 

therapeutic strategies against SARS-CoV-2 (Table 1). 

 

Proteins 

Proteins are critical factors in immune-nutrition and 

essential for the production of, for example, 

immunoglobulins and cytokines. Dietary proteins are 

digested to their constituent amino acids, and dietary 

protein deficiency reduces plasma concentrations of most 

amino acids. Amino acids, such as arginine, are the 

precursors of polyamines that play a significant role in 

the regulation of DNA replication and cell division. In 

addition, optimal antibody production requires a 

sufficient plasma arginine level. Supplementation with 

arginine significantly increases T cell function as well as 

enhances their numbers compared with control subjects 
[61]. Furthermore, arginine is essential for the generation 

of nitric oxide by macrophages, an essential component 

of the innate immune response. In contrast, methionine 

has an important role in the growth, development and 

histological structure of immune organs and enhances 

macrophage phagocytic activity [62]. Methionine 

deficiency also decreases lymphocyte activities and 

inhibits the proliferation and differentiation of B and T 

cells [63]. Methionine also plays a role in both humoral 

and cellular immunity since methionine deficiency 

significantly affects antibody titre and decreases serum 

levels of IgG, IgA, and IgM. Furthermore, methionine 

deficiency 

Decreases the relative percentage of CD3+, CD3+/CD8+, 

and CD3+/CD4+T lymphocytes (64). Given the 

importance of T cell immunity in the defence against 

COVID-19, this aspect of methionine deficiency is 

essential in the prevention of and reduction in the severity 

of infection. 

Reduction of sulphur-containing amino acids in the 

serum significantly reduces the hydroxyl radical 

scavenging activity of superoxide dismutase (SOD) and 

glutathione peroxidase (GSH-Px), which helps to protect 

the host against viral infection [3, 4]. Thus, methionine 

deficiency can result in oxidative damage and lipid 

peroxidation, which will lead to a failure in cellular 

immunity. 

Amino acids are also important components for cytokine 

production. The production of interleukin (IL)-1, IL-6 

and tumour necrosis factor (TNF) α is strongly dependent 

on the metabolism of sulphur-containing amino acids, 

including methionine and cysteine [65]. 

The effect of dietary proteins in improving immune 

function has been reported in cancer patients. In a clinical 

trial, whey protein isolate (WPI) enriched with Zn and Se 

improved cell-mediated immunity and antioxidant 

capacity in cancer patients undergoing chemotherapy. 

WPI is an alternative oral nutrition supplement (ONS) 

that contains high-quality protein and amino acid 

profiles. WPI increases GSH function because of its 

cysteine-enriched supplementation, reduces oxidative 

free radical formation and prevents infection (5). This 

suggests that WPI supplementation may improve GSH 

levels and thereby enhance immunity in subjects at risk 

of COVID-19, as well as reduce the severity of the 

disease in patients already infected with SARS-CoV-2. 

 

Vitamins 

Role of Vitamins in Immune Regulation and COVID-

19 

Robust immune responsiveness underpins both 

prophylactic protection and therapeutic management of 

COVID-19 (62). Micronutrient vitamins constitute 

essential modulators of immunological equilibrium, with 
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intake levels directly governing the body's capacity to 

orchestrate immune homeostasis [66] (Table 1). 

Illustratively, retinoids (vitamin A) and cholecalciferol 

(vitamin D) augment antibody generation following 

pediatric influenza immunisation [63, 67]. Individuals 

practising intermittent fasting or caloric restriction 

should prioritise strategic consumption of nutrient-

concentrated foods and vitamin sources to preserve 

physical performance capacity and immune operational 

efficiency [17]. 

 

Vitamin A 

Retinol and its metabolites serve fundamental functions 

across both cell-mediated and antibody-driven immunity, 

amplifying humoral responses post-antiviral vaccination 
[56]. Operating via retinoic acid nuclear receptors, vitamin 

A orchestrates immune-cell proliferation and lineage 

commitment while tempering pro-inflammatory 

mediators, including tumour necrosis factor-α and 

interleukin-6 [68-71]. Sufficient retinoid availability 

correlates with reduced susceptibility to respiratory tract 

infections, human immunodeficiency virus, and malarial 

parasitemia [72, 73]. Coronavirus-infected animal models 

exhibit marked reductions in circulating retinol and 

retinol-binding protein concentrations, whereas adequate 

dietary vitamin A provision enhances survival 

trajectories following respiratory challenge [74, 75]. These 

mechanistic observations suggest that optimising vitamin 

A status—or intervening therapeutically when deficient 

may attenuate COVID-19 infection risk and mitigate 

disease progression severity. 

 

B-Complex Vitamins 

The B-vitamin family, notably folate, cobalamin (B₁₂), 

and pyridoxine (B₆), executes pivotal functions in 

metabolic pathways governing immune regulatory 

networks. Pyridoxal-5'-phosphate, the bioactive 

coenzyme form of vitamin B₆, catalyses amino-acid 

transformations and biosynthesis of critical immune 

signalling molecules [76, 77]. Adequate B-vitamin status 

sustains natural-killer lymphocyte activity and CD8⁺ 

cytotoxic T-cell functionality, both indispensable for 

antiviral clearance mechanisms [78]. 

 

Vitamin D 

Cholecalciferol represents a lipophilic secosteroid 

exhibiting hormone-like regulatory properties across 

multiple physiological systems, prominently including 

immune signal transduction [79]. Vitamin D receptors 

populate respiratory epithelial surfaces and immune cell 

populations, wherein cytokine networks and pattern-

recognition receptors activate vitamin D-responsive 

genetic programs [79, 80]. Epidemiologic investigations 

demonstrate that hypovitaminosis D amplifies infection 

susceptibility to influenza viruses, parainfluenza strains, 

and respiratory syncytial virus [81, 82]. Circulating 25-

hydroxyvitamin D concentrations exceeding 95 nmol/L 

associate with approximately 50% reductions in acute 

respiratory infection incidence [60]. Insufficient vitamin D 

availability correlates with elevated pro-inflammatory 

cytokine elaboration and increased prevalence of 

thrombotic events, adiposity, and glucose 

dysregulation—comorbidities consistently linked to 

adverse COVID-19 clinical trajectories [84]. Laboratory 

investigations further reveal that cholecalciferol 

metabolites suppress SARS-CoV-2 replicative capacity 

within nasopharyngeal epithelial cell cultures (85). 

Epidemiologic analyses connect vitamin D insufficiency 

with heightened mortality risk, particularly within 

populations exhibiting endemic low serum levels, 

exemplified by African-American communities in 

metropolitan Chicago [66, 86-88]. Though scholarly debate 

persists, preponderant evidence supports that 

maintaining vitamin D sufficiency diminishes both 

COVID-19 acquisition risk and severity; 

supplementation strategies may therefore merit 

consideration for vulnerable population subsets [89]. 

 

Vitamin E 

Tocopherols and tocotrienols function as lipid-phase 

antioxidants modulating immune and inflammatory 

signalling cascades through transcriptional regulation 

and membrane stabilisation [90-93]. Deficiency states 

compromise both humoral antibody production and 

cellular immune competence [94]. While supraphysiologic 

supplementation elevated pneumonia incidence among 

tobacco users [95], clinical evidence alternatively 

documents therapeutic benefits, including improved 

hepatitis B viral clearance and enhanced pediatric 

seroconversion rates [96, 97]. Computational docking 

analyses additionally propose that vitamin E may disrupt 

SARS-CoV-2 spike protein engagement with 

angiotensin-converting enzyme 2 and transmembrane 

serine protease 2 receptors, suggesting potential antiviral 

mechanisms warranting empirical investigation [98]. 

 

Vitamin C 

Ascorbic acid supports diverse immune operations 

encompassing leukocyte chemotaxis, immunoglobulin 

biosynthesis, and reactive oxygen species neutralisation 
[58, 97]. It additionally facilitates neuroendocrine hormone 

synthesis, connective tissue repair, and maintenance of 

immune homeostatic balance. Experimental systems 

demonstrate that vitamin C potentiates type I interferon 

production during influenza A challenge, constraining 

viral replication dynamics [100]. Elevated plasma 

ascorbate concentrations associate with diminished 

pneumonia frequency and abbreviated upper-respiratory 

infection duration [101, 102]. Furthermore, high-dose 

intravenous ascorbic acid administration attenuates acute 

respiratory distress syndrome (ARDS) severity 

precipitated by viral pneumonias, a pathologic hallmark 

of severe COVID-19 presentations [103, 104]. Except for 

individuals harboring renal insufficiency or glucose-6-

phosphate dehydrogenase enzymatic deficiency, high-

dose oral or parenteral vitamin C administration has not 

elicited clinically significant adverse sequelae [105, 106]. 
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Minerals 

In addition to vitamins, several essential minerals 

contribute to antiviral defence mechanisms and may help 

control COVID-19 (Table 1). Zinc is particularly 

important for regulating immune responses and 

supporting both antiviral and antibacterial activity [107]. 

Insufficient zinc levels are linked with higher 

vulnerability to infections, while adequate levels promote 

balanced immune regulation and cytokine signalling [108]. 

Evidence from patients infected with torque tenovirus 

(TTV) shows that zinc administration can enhance 

immune responses [107]. Similarly, moderate 

supplementation of zinc in combination with selenium 

has been found to strengthen humoral immunity to the 

influenza vaccine and elevate antibody titres [109]. 

Laboratory data indicate that zinc can inhibit the 

replication of SARS-CoV-2 by blocking viral RNA 

polymerase activity [110]. Compounds such as chloroquine 

may act as zinc ionophores, facilitating intracellular zinc 

uptake and further enhancing antiviral effects [111]. 

Moreover, zinc may influence ACE2 enzyme activity and 

modulate interferon-α (IFNα) production, thereby 

improving antiviral signalling [108]. Through its anti-

inflammatory actions—such as suppression of NF-κB 

signalling and regulation of T-cell function zinc can also 

contribute to controlling the excessive cytokine response 

observed in severe COVID-19 cases [112]. 

TABLE 1 | Overall role and impact of nutrition on 

immune function.  

 
Table 1: Role and Impact of Nutrients and Bioactive Compounds on Immune Responses 

 

Category 
Specific 

Nutrient 
Role and Impact on Immune Responses 

Protein — 

• Promotes cytokine and antibody synthesis. 

• Regulates both humoral and cellular immunity, especially T-cell activity. 

• Supports DNA synthesis, repair, and cell division. 

• Facilitates the generation of nitric oxide, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), 

contributing to antioxidant defence. 

Vitamins 
A group of 

vitamins 

• Strengthen antiviral immune defence. 

• Control immune-cell proliferation and differentiation through nuclear retinoic acid receptor activation. 

 B group vitamins 
• Act as cofactors in immune metabolic pathways. 

• Support viral clearance by regulating natural killer (NK) and CD8⁺ cytotoxic T-cell functions. 

 C group vitamins 
• Function as enzymatic cofactors and antioxidants that enhance phagocytosis, signalling, antibody production, 

hormone balance, and leukocyte migration. 

 D group vitamins 
• Reduce lung inflammation. 

Stimulate proliferation and activation of virus-specific immune cells via vitamin D receptors. 
Promote cytokine production and immune-cell recruitment to infection sites. 

 E group vitamins 

• Exhibit antioxidant properties. 

• Regulate genes linked to T-cell proliferation, phagocytosis, and cytotoxicity. 

• Control the generation of reactive oxygen (ROS) and nitrogen species (RNS) and modulate intracellular 

signalling pathways. 

Minerals Zinc 

• Enhances antiviral and antibacterial immunity by inhibiting viral RNA polymerase and ACE2 activity. 

• Modulates inflammatory cytokine production. 

• Promotes Th1 cytokine responses and supports immune metabolic activity. 

 Selenium 

• Provides antioxidant and anti-inflammatory benefits. 

• Increases T-cell proliferation. 

• Upregulates IL-10 for immune regulation. 

 Copper 

• Restrains viral replication and release. 

• Prevents virus-induced apoptosis. 

• Maintains antioxidant enzyme systems via ceruloplasmin, benzylamine oxidase, and superoxide dismutase 

activity. 

 Magnesium 
• Acts as a cofactor in numerous enzymatic reactions. 

• Regulates NF-κB, IL-6, C-reactive protein, and associated immune signalling pathways. 

Probiotics — • Influence immune balance by up- or down-regulating immune responses depending on host needs. 

 

Zinc 

Deficient zinc status has been linked to higher 

vulnerability to viral infections, including those caused 

by HIV and HCV [113]. Evidence from randomised 

controlled trials (RCTs) suggests that zinc 

supplementation enhances Th1-type immune activity by 

stimulating IL-2 and IFN-γ release following influenza 

vaccination [107]. Additional RCT data indicate that 

administering high-dose zinc after stem-cell 

transplantation may restore thymic function and expand 

CD4⁺ naïve T-cell populations, which corresponded with 

reduced TTV reactivation risk [107]. Conversely, studies 

in older adults report that elevated plasma zinc 

concentrations do not significantly affect antibody 

generation or lymphocyte proliferation after influenza 

vaccination [114]. 

 

Selenium 

Selenium is an essential trace element recognised for its 

antioxidant and anti-inflammatory roles [115]. 

Supplementation has been associated with accelerated 

poliovirus clearance following influenza vaccination and 

has demonstrated dose-dependent stimulation of T-cell 

proliferation, along with increased IL-8 and IL-10 
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production. These immunologic changes, however, did 

not yield marked improvements in influenza-specific 

mucosal antibody titers [116]. 

 

Copper 

Copper contributes to the differentiation and function of 

immune cells and plays a vital role in antiviral defence 
[117]. Experimental studies have shown that complexes 

containing copper and thujaplicin can mitigate influenza-

induced apoptosis, inhibit viral replication, and reduce 

viral release from infected cells [118]. Within host cells, 

copper appears to interfere with multiple stages of viral 

replication [119]. Sufficient copper intake supports 

antioxidant defences by increasing the activity and serum 

concentrations of ceruloplasmin, benzylamine oxidase, 

and superoxide dismutase [118, 120]. 

 

Magnesium 

Magnesium is critical for maintaining immune balance 

and serves as a cofactor in numerous enzymatic reactions 

involved in innate and adaptive immunity [121, 122]. 

Adequate intake helps regulate inflammatory signalling 

through modulation of NF-κB, IL-6, and C-reactive 

protein pathways [123]. Experimental models consistently 

indicate that magnesium contributes to antiviral defence 

mechanisms [121, 124]. Clinically, combined 

supplementation with magnesium, vitamin D, and 

vitamin B12 has been associated with milder COVID-19 

progression and fewer cases requiring intensive care [125]. 

 

Probiotics 

SARS-CoV-2 infection alters gastrointestinal function 

via ACE2- and TMPRSS2-mediated entry into intestinal 

epithelial cells, triggering release of pro-inflammatory 

cytokines and chemokines [126, 127]. Elevated faecal 

calprotectin and serum IL-6 concentrations serve as 

markers of virus-induced intestinal inflammation [127]. 

Although evidence on probiotics and prebiotics in 

COVID-19 remains limited, two RCTs involving 

mechanically ventilated patients reported that 

supplementation with Lactobacillus rhamnosus GG, 

Bacillus subtilis, and Enterococcus faecalis reduced the 

incidence of ventilator-associated pneumonia compared 

with placebo [128, 129]. Given the immunopathological 

overlap between severe COVID-19 and ARDS, 

probiotic-based interventions merit continued 

investigation. 

Patients with COVID-19 frequently exhibit gut 

microbiota dysbiosis, with depletion of beneficial genera 

such as Eubacterium ventriosum, Faecalibacterium 

prausnitzii, and Roseburia, alongside expansion of 

opportunistic pathogens like Clostridium hathewayi and 

Actinomyces viscosus [130]. While causality remains 

unclear, restoring microbiota balance may enhance 

immune modulation and reduce inflammation [131]. 

Because dysbiosis is prevalent among elderly individuals 

and those with metabolic or cardiovascular disorders [132], 

microbiome-targeted nutritional strategies could improve 

recovery outcomes, though large-scale RCT 

confirmation is required [133]. 

 

CONCLUSION 

COVID-19 continues to exert a major global health 

burden. Until long-term vaccine and therapeutic 

coverage becomes universal, maintaining optimal 

nutritional status is central to immune resilience. 

Sufficient intake of essential micronutrients influences 

infection susceptibility, therapeutic response, and 

recovery potential. Diets abundant in vitamins and 

minerals support recovery in individuals with 

cardiovascular, pulmonary, or metabolic conditions, as 

well as in patients affected by malnutrition or muscle 

wasting [134]. Implementing early, individualised nutrition 

interventions throughout rehabilitation may improve 

recovery trajectories and decrease the likelihood of long-

COVID [134]. 

From a public health standpoint, equitable access to 

nutritious food must be prioritised. Coordinated 

governmental and community programs that strengthen 

food security and nutrition literacy are essential to reduce 

health disparities and enhance preparedness for future 

infectious disease threats. 
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