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Abstract

A viral disease due to a coronavirus was reported in a famous city of China, Wuhan, and spread in to
all over the world which rapidly changing into an exploding pandemic and posing a severe threat to
human health all over the world. There are not sufficient treatment options for the management of
this global disease, and a shortage of vaccines. Important aspects that help to defeat coronavirus
infection seem to be having a healthy, strong, and resilient immune system. Nutrition and metabolic
disorders, such as obesity, cardiovascular disease and diabetes, play an important role in the
community health condition in general and especially during this new pandemic. There seems to be a
vast impact of lifestyle, metabolic disorders, and immune status on coronavirus disease 2019 (COVID-
19). For this reason, it is important to consider the impact of lifestyle and the consumption of well-
defined healthy diets during the pandemic.

In this review, we summarise recent findings on the effect of nutrition on COVID-19 susceptibility
and disease severity and treatment. Understanding how specific dietary features might help improve
public health strategies to reduce the rate and severity of COVID-19.
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1. INTRODUCTION

The appearance of SARS-CoV-2 in late 2019 sparked an
infectious disease outbreak known as COVID-19 that
rapidly escalated into a global health emergency [ 2. By
mid-2021, the pathogen and its evolving variants had
reached more than 165 million people worldwide,
claiming roughly 3.42 million lives ©*). Beyond infection
tallies and fatalities, the containment strategies deployed,
ranging from home confinement and mobility bans to
complete societal shutdowns, generated cascading
economic, psychological, and social harms, eroding
population well-being and disrupting routine care
delivery (1.

Individual clinical experiences with SARS-CoV-2 span
an exceptionally wide spectrum. Some infected persons
show no symptoms or only transient upper-airway
complaints, whereas others progress to fulminant viral
lung disease featuring high fever, persistent cough,
laboured breathing, diffuse radiographic opacities, and
life-threatening hypoxemia necessitating invasive
respiratory support P-#. Roughly one in five cases
advances to critical respiratory complications, with
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aggregate mortality approaching 2.3% during that phase
of the pandemic Pl. Crucially, tissue tropism is not
confined to pulmonary structures; the virus invades renal,
enteric, ocular, cardiac, and neural compartments,
amplifying both immediate clinical complexity and post-
acute sequelae [*-%,

Mental and physical conditioning are foundational to
immune stability and adaptability, which together
determine whether an individual can generate a
coordinated antiviral defence [ !9 Among host
characteristics amenable to intervention, excessive body
fat and impaired glucose regulation stand out as powerful
predictors of adverse COVID-19 trajectories ''l. Adipose
tissue dysfunction fosters metabolic turbulence,
hormonal perturbations, chronic subacute inflammation,
and compromised leukocyte performance ['?!. Physical
inactivity compounds these effects, driving progression
toward insulin resistance and metabolic syndrome
conditions that mechanistically converge on elevated
ACE2 receptor availability, the key molecular gateway
exploited for viral cell entry [3],
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Food intake patterns exert substantial leverage over these
metabolic derangements. Habitual consumption of
energy-dense, nutrient-poor foods dominated by
saturated lipids and processed grains, coupled with
insufficient fibre and phytochemical intake, promotes
oxidative stress and inflammatory  signalling.
Conversely, nutrient-adequate eating supports immune
coordination and reinforces barriers against microbial
invasion U4, Undernutrition disturbs epigenetic
programming, impairs intracellular communication
cascades, and destabilises immunoregulatory networks,
collectively raising infection risk and worsening clinical
outcomes. Poor-quality diets, therefore, undermine
antimicrobial preparedness and amplify vulnerability to
serious SARS-CoV-2 illness.

Food security and dietary adequacy are unevenly
distributed and reflect broader sociocultural and
economic gradients that correlate with COVID-19
burden [, Within the United States, Indigenous and
Hispanic communities have experienced
disproportionately high admission rates compared to
non-Hispanic White populations, disparities partially
rooted in longstanding nutritional inequities and elevated
obesity prevalence [> !9 Religious and cultural
observances also intersect with metabolic health. In
resource-limited Islamic-majority settings, the annual
Ramadan fast can constrain meal timing and curtail
physical exertion "7, While diminished activity may
transiently compromise immune vigilance, controlled
energy restriction and meal consolidation have
demonstrated favourable effects on glycemic control,
antioxidant capacity, and inflammatory tone ['”1,

In sum, dietary quality and body composition critically
shape population resilience during the COVID-19 era.
This review consolidates emerging data on the
bidirectional relationship between nutritional status and
disease expression, highlighting how eating behaviours
and metabolic phenotypes modulate host immunity
against SARS-CoV-2. Clarifying which nutritional
practices intensify or attenuate illness progression will
guide strategic public-health initiatives designed to curb
transmission and accelerate convalescence.

Pathogenesis of COVID-19 disease

SARS-CoV-2 principally attacks respiratory epithelia,
though extrapulmonary organs are frequently involved.
The landmark Wuhan case cohorts documented classic
lower-airway infection signs: elevated body temperature,
nonproductive cough, and shortness of breath [6].
Concurrent systemic features—including cephalgia,
vertigo, profound fatigue, nausea, and loose stools—
were also prevalent ['8], Despite its respiratory signature,
COVID-19 can persist within intestinal tissue,
establishing  gastrointestinal  reservoirs [ and
neurologic abnormalities have emerged in a sizable
fraction of inpatient populations 2%,

Respiratory pathology is highly heterogeneous,
encompassing subclinical carriers through to profound
oxygen desaturation and acute respiratory distress
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syndrome (ARDS) 3211 Early Chinese data revealed that
symptom-to-ARDS intervals could contract to nine days,
underscoring the potential for precipitous decline [©.
ACE?2 serves as the principal host entry portal for SARS-
CoV-2 (22), with molecular investigations confirming
tight affinity between the viral spike glycoprotein and
this membrane-bound receptor 23-2%1, Tissue-level ACE2
abundance is prominent in pulmonary, cardiac, intestinal,
renal, and urinary structures % and is especially
concentrated at the luminal interface of alveolar lining
cells 27281 This anatomic distribution aligns with the
observation that early parenchymal injury clusters in
peripheral lung zones 1.

Host genetic architecture influences susceptibility to
infectious agents, and primary immunodeficiencies often
dictate clinical trajectories . Outcome heterogeneity in
COVID-19  likely reflects underlying genetic
predispositions as well. Chronological age, biological
sex, and pre-existing morbidities such as elevated blood
pressure, dysglycemia, airway disease, and cardiac
pathology consistently correlate with escalated severity
and lethality, marking them as pivotal risk determinants
[31]

Morbidity and death from COVID-19 climb steeply in
older adults and individuals burdened by chronic illness,
including malignancy and atherosclerotic disorders.
Nonetheless, sporadic life-threatening presentations
occur even among juveniles and previously robust
patients [, The interplay of vulnerability factors and
outcome modulators in SARS-CoV-2 infection remains
incompletely mapped. Heightened disease severity has
been tied to dysregulated immune activation and ACE2-
mediated viral tropism, though additional host genetic
elements governing receptor expression and entry
cofactor function continue to surface 3.

Competent immune surveillance is indispensable for
repelling pathogenic microbes. Yet COVID-19 often
disrupts immunological equilibrium, curtailing the
capacity to execute coordinated antimicrobial responses
1341, Uncontrolled release of pro-inflammatory cytokines
and chemokines, the so-called "cytokine storm",
precipitates widespread tissue injury characterised by
fluid extravasation, endothelial barrier breakdown, and
microthrombi formation. This exaggerated inflammatory
cascade underlies the acute lung injury (ALI) and ARDS
phenotypes observed in critically ill patients, frequently
culminating in death.

Male patients face an elevated risk of severe
manifestations and unfavourable outcomes relative to
females. Mechanistic clarity remains elusive, though
candidate explanations include chromosomal effects,
differential modulation by androgenic and estrogenic
hormones, and sex-linked variation in innate immune cell
repertoires, including mast cell behaviour B3
Intriguingly, men with prostate cancer receiving
androgen-deprivation therapy, a regimen that curtails
testosterone signalling fueling neoplastic growth,
demonstrated markedly lower SARS-CoV-2 infection
rates ¢l This finding implies that testosterone



suppression may confer a protective effect. Emerging
data also suggest sex-specific variation in pattern-
recognition receptor expression and viral entry
machinery. While definitive evidence for dimorphic
ACE2 and associated protease expression remains
pending, these remain plausible mechanistic contributors
to observed sex-based outcome disparities in COVID-19.

Physical inactivity, malnutrition, and COVID-19

Adequate nutrient provision constitutes a cornerstone of
host defence mechanisms operative against diverse
microbial threats 4. Conversely, nutritional deficits and
poor-quality  eating  patterns markedly  erode
immunological readiness, thereby amplifying infectious
disease vulnerability 371, Confinement protocols enacted
during the pandemic triggered concurrent declines in
locomotor activity and elevations in energy consumption,
a dual phenomenon of particular concern given that each
factor independently escalates COVID-19 severity
trajectories %1, These alterations prove especially
detrimental among individuals in the fifth decade of life
and beyond, where insufficient physical engagement
compromises cardiac functional reserve, alters somatic
composition, destabilises metabolic equilibria, reduces
skeletal muscle capacity, disrupts hemostatic balance,
and weakens immune surveillance networks 1. Notably,
exercise of moderate intensity augments immune
coordination mechanisms and associates with diminished
upper airway infection frequency, whereas training loads
exceeding physiological thresholds may paradoxically
attenuate protective responses [*°1. Figure 1 depicts the
bidirectional relationships linking movement behaviours
and nutritional choices to immune system performance.
Insufficient nutrient availability can dramatically
modulate multiple phases of SARS-CoV-2 pathogenesis
from initial host susceptibility through acute disease
progression, convalescent recovery kinetics, and
potential reinfection susceptibility across diverse patient
populations [ Dietary regimens characterised by
elevated saturated lipid content, simple carbohydrate
dominance, and deficits in complex polysaccharides and
antioxidant phytonutrients perturb the functional
equilibrium between innate recognition systems and
adaptive memory responses, thereby compromising
antiviral defence architecture “!. Furthermore, these
nutritional profiles demonstrate robust correlations with
increased prevalence of established COVID-19 risk
determinants and extended post-infectious recuperation
intervals ™2, Chronic consumption of saturated fatty
acid-enriched foods persistently activates innate immune
signalling cascades while concurrently suppressing
adaptive immune arm  functionality ML 4,
Mechanistically, saturated fatty acid abundance
generates lipotoxic intracellular microenvironments that
engage toll-like receptor 4 (TLR4) on macrophage and
neutrophil plasma membranes, perpetuating pro-
inflammatory signalling networks and cytokine
biosynthesis ™! 431, Nutritional composition additionally
regulates TLR9 receptor expression densities and the
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bioavailability = of endogenous  TLRO9-activating
molecular patterns, a pathway hypothesised to contribute
to accelerated clinical deterioration trajectories in
vulnerable COVID-19 patient subsets 4. Lipid-enriched
dietary patterns elevate TLR9 abundance within visceral
adipose tissue compartments across both rodent
experimental systems and human study populations 4],
Such nutritional exposures stimulate excessive nucleic
acid and associated protein antigen generation, thereby
intensifying metabolic inflammatory responses through
enhanced macrophage activation states and plasmacytoid
dendritic cell (pDC) proliferation within hepatic

parenchyma [, Preclinical animal investigations
additionally demonstrate that sustained high-fat
nutritional regimens promote macrophage tissue

infiltration into pulmonary interstitium and alveolar
airspaces, a phenomenon that mirrors the inflammatory
alveolar epithelial pathology and tissue injury patterns
documented in obese or metabolically compromised
COVID-19 patient cohorts 71, Furthermore, excessive
carbohydrate and lipid intake potentiates oxidative
cellular stress responses, restricting lymphocyte
proliferative capacity and differentiation processes while
simultaneously triggering programmed death signalling
pathways, collectively attenuating adaptive antiviral
immune competence %, In influenza-challenged animal
experimental platforms, subjects maintained on lipid-
dense nutritional protocols exhibited exacerbated
pulmonary tissue destruction patterns and protracted
adaptive immune response initiation, accompanied by
memory T-lymphocyte functional impairment and
diminished antigen recognition efficiency alongside
compromised viral clearance capacity [*¥1. The precise
molecular mechanisms driving enhanced pulmonary
damage remain under investigation but likely encompass
multiple apoptotic and regulated necrotic cellular death
programs %21, Given these mechanistic insights, elderly
populations, individuals harbouring chronic comorbid
medical conditions, and persons demonstrating
established COVID-19 vulnerability factors should
exercise judicious caution regarding the adoption of
nutrient-deficient dietary patterns that potentially
amplify disease severity outcomes. In contrast,
nutritionally balanced intake protocols delivering
sufficient macronutrient quantities, micronutrient
adequacy, vitamin sufficiency, essential mineral
availability, and potentially beneficial commensal
microorganisms, including probiotic species, can support
sustained immune functional capacity and facilitate
restoration of compromised immune networks [,
Protein nutritional adequacy, vitamin sufficiency status,
and mineral homeostatic balance have historically been
acknowledged as pivotal modulators of health resilience
and infection resistance phenotypes through their
regulatory influences on immune system equilibrium 4],
The immune-enhancing characteristics attributed to
traditional ~ botanical  therapeutic ~ preparations,
exemplified by Shuang-Huang-Lian oral liquid
formulations employed for upper respiratory tract



infection management, may partially derive from specific
bioactive  peptide  constituents and  additional
phytochemical components > 3. A contemporary
comprehensive meta-analytic evaluation examining
nutritional status influences on immune response
capacities directed against respiratory viral challenges
concluded that vitamin and mineral nutritional adequacy
critically determines host capacity for mobilising
efficacious  antiviral defence mechanisms and
demonstrates direct correlative associations with
infection severity outcome patterns 61,

Current global evidence highlights a consistent
relationship between micronutrient adequacy and
COVID-19 clinical outcomes, including survival rates.
Low serum prealbumin concentrations, for instance, have
been linked to more severe cases of acute respiratory
distress syndrome in SARS-CoV-2—infected patients 7).
Essential micronutrients such as vitamin A, B-complex
vitamins, vitamin C, vitamin D, vitamin E, and key trace
minerals play crucial roles in coordinating immune
signalling, antioxidant defence, and inflammatory
regulation %% %%, Insufficient levels of these nutrients can
compromise immune competence and elevate
susceptibility to viral infections, including SARS-CoV-2
101, Some studies also report immunomodulatory and
protective benefits from natural bioactive compounds of
plant origin.

malnutrition )
obesity &
metabolic | RESPONSE
disease immune-system “
LT B )
biological age |

OUTCOME

infection No overcoming Yes infection
uncontrolled <€—— infection = controlled

In summary, an individual’s nutritional status influences
not only the risk of contracting COVID-19 but also the
potential severity and recovery trajectory of the disease.
The subsequent section further explores the specific roles
of proteins, vitamins, and minerals in respiratory viral
infections, offering potential insights for preventive and
therapeutic strategies against SARS-CoV-2 (Table 1).

Proteins
Proteins are critical factors in immune-nutrition and
essential for the production of, for example,

immunoglobulins and cytokines. Dietary proteins are
digested to their constituent amino acids, and dietary
protein deficiency reduces plasma concentrations of most
amino acids. Amino acids, such as arginine, are the
precursors of polyamines that play a significant role in
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the regulation of DNA replication and cell division. In
addition, optimal antibody production requires a
sufficient plasma arginine level. Supplementation with
arginine significantly increases T cell function as well as
enhances their numbers compared with control subjects
(611, Furthermore, arginine is essential for the generation
of nitric oxide by macrophages, an essential component
of the innate immune response. In contrast, methionine
has an important role in the growth, development and
histological structure of immune organs and enhances
macrophage phagocytic activity 62, Methionine
deficiency also decreases lymphocyte activities and
inhibits the proliferation and differentiation of B and T
cells 31, Methionine also plays a role in both humoral
and cellular immunity since methionine deficiency
significantly affects antibody titre and decreases serum
levels of IgG, IgA, and IgM. Furthermore, methionine
deficiency

Decreases the relative percentage of CD3*, CD3*/CDS§",
and CD3'/CD4'T lymphocytes (64). Given the
importance of T cell immunity in the defence against
COVID-19, this aspect of methionine deficiency is
essential in the prevention of and reduction in the severity
of infection.

Reduction of sulphur-containing amino acids in the
serum significantly reduces the hydroxyl radical
scavenging activity of superoxide dismutase (SOD) and
glutathione peroxidase (GSH-Px), which helps to protect
the host against viral infection > . Thus, methionine
deficiency can result in oxidative damage and lipid
peroxidation, which will lead to a failure in cellular
immunity.

Amino acids are also important components for cytokine
production. The production of interleukin (IL)-1, IL-6
and tumour necrosis factor (TNF) a is strongly dependent
on the metabolism of sulphur-containing amino acids,
including methionine and cysteine [,

The effect of dietary proteins in improving immune
function has been reported in cancer patients. In a clinical
trial, whey protein isolate (WPI) enriched with Zn and Se
improved cell-mediated immunity and antioxidant
capacity in cancer patients undergoing chemotherapy.
WPI is an alternative oral nutrition supplement (ONS)
that contains high-quality protein and amino acid
profiles. WPI increases GSH function because of its
cysteine-enriched supplementation, reduces oxidative
free radical formation and prevents infection (5). This
suggests that WPI supplementation may improve GSH
levels and thereby enhance immunity in subjects at risk
of COVID-19, as well as reduce the severity of the
disease in patients already infected with SARS-CoV-2.

Vitamins

Role of Vitamins in Immune Regulation and COVID-
19

Robust immune responsiveness underpins both
prophylactic protection and therapeutic management of
COVID-19 (62). Micronutrient vitamins constitute
essential modulators of immunological equilibrium, with



intake levels directly governing the body's capacity to
orchestrate immune homeostasis [ (Table 1).
Illustratively, retinoids (vitamin A) and cholecalciferol
(vitamin D) augment antibody generation following
pediatric influenza immunisation 63 ¢, Individuals
practising intermittent fasting or caloric restriction
should prioritise strategic consumption of nutrient-
concentrated foods and vitamin sources to preserve
physical performance capacity and immune operational
efficiency ['7],

Vitamin A

Retinol and its metabolites serve fundamental functions
across both cell-mediated and antibody-driven immunity,
amplifying humoral responses post-antiviral vaccination
[5¢], Operating via retinoic acid nuclear receptors, vitamin
A orchestrates immune-cell proliferation and lineage
commitment while tempering pro-inflammatory
mediators, including tumour necrosis factor-o and
interleukin-6 [%7, Sufficient retinoid availability
correlates with reduced susceptibility to respiratory tract
infections, human immunodeficiency virus, and malarial
parasitemia "> 731, Coronavirus-infected animal models
exhibit marked reductions in circulating retinol and
retinol-binding protein concentrations, whereas adequate
dietary vitamin A provision enhances survival
trajectories following respiratory challenge U+ 7). These
mechanistic observations suggest that optimising vitamin
A status—or intervening therapeutically when deficient
may attenuate COVID-19 infection risk and mitigate
disease progression severity.

B-Complex Vitamins

The B-vitamin family, notably folate, cobalamin (B12),
and pyridoxine (Bs), executes pivotal functions in
metabolic pathways governing immune regulatory
networks.  Pyridoxal-5'-phosphate, the Dbioactive
coenzyme form of vitamin Bs, catalyses amino-acid
transformations and biosynthesis of critical immune
signalling molecules [7® 771, Adequate B-vitamin status
sustains natural-killer lymphocyte activity and CDS8*
cytotoxic T-cell functionality, both indispensable for
antiviral clearance mechanisms [7%),

Vitamin D

Cholecalciferol represents a lipophilic secosteroid
exhibiting hormone-like regulatory properties across
multiple physiological systems, prominently including
immune signal transduction "), Vitamin D receptors
populate respiratory epithelial surfaces and immune cell
populations, wherein cytokine networks and pattern-
recognition receptors activate vitamin D-responsive
genetic programs " 8 Epidemiologic investigations
demonstrate that hypovitaminosis D amplifies infection
susceptibility to influenza viruses, parainfluenza strains,
and respiratory syncytial virus B! 821 Circulating 25-
hydroxyvitamin D concentrations exceeding 95 nmol/L
associate with approximately 50% reductions in acute
respiratory infection incidence [, Insufficient vitamin D
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availability correlates with elevated pro-inflammatory
cytokine elaboration and increased prevalence of
thrombotic events, adiposity, and glucose
dysregulation—comorbidities consistently linked to
adverse COVID-19 clinical trajectories 4. Laboratory
investigations further reveal that cholecalciferol
metabolites suppress SARS-CoV-2 replicative capacity
within nasopharyngeal epithelial cell cultures (85).
Epidemiologic analyses connect vitamin D insufficiency
with heightened mortality risk, particularly within
populations exhibiting endemic low serum levels,
exemplified by African-American communities in
metropolitan Chicago %6 36-881 Though scholarly debate
persists, preponderant evidence supports that
maintaining vitamin D sufficiency diminishes both
COVID-19 acquisition risk and severity;
supplementation strategies may therefore merit
consideration for vulnerable population subsets [,

Vitamin E

Tocopherols and tocotrienols function as lipid-phase
antioxidants modulating immune and inflammatory
signalling cascades through transcriptional regulation
and membrane stabilisation %%}, Deficiency states
compromise both humoral antibody production and
cellular immune competence 4. While supraphysiologic
supplementation elevated pneumonia incidence among
tobacco users 31 clinical evidence alternatively
documents therapeutic benefits, including improved
hepatitis B viral clearance and enhanced pediatric
seroconversion rates % %7l Computational docking
analyses additionally propose that vitamin E may disrupt
SARS-CoV-2 spike protein engagement with
angiotensin-converting enzyme 2 and transmembrane
serine protease 2 receptors, suggesting potential antiviral
mechanisms warranting empirical investigation [*8],

Vitamin C

Ascorbic acid supports diverse immune operations
encompassing leukocyte chemotaxis, immunoglobulin
biosynthesis, and reactive oxygen species neutralisation
[58, 971 1t additionally facilitates neuroendocrine hormone
synthesis, connective tissue repair, and maintenance of
immune homeostatic balance. Experimental systems
demonstrate that vitamin C potentiates type I interferon
production during influenza A challenge, constraining
viral replication dynamics [% Elevated plasma
ascorbate concentrations associate with diminished
pneumonia frequency and abbreviated upper-respiratory
infection duration [ 1921 Furthermore, high-dose
intravenous ascorbic acid administration attenuates acute
respiratory  distress syndrome (ARDS) severity
precipitated by viral pneumonias, a pathologic hallmark
of severe COVID-19 presentations [1%% 1941 Except for
individuals harboring renal insufficiency or glucose-6-
phosphate dehydrogenase enzymatic deficiency, high-
dose oral or parenteral vitamin C administration has not
elicited clinically significant adverse sequelae [0 106],



Minerals

In addition to vitamins, several essential minerals
contribute to antiviral defence mechanisms and may help
control COVID-19 (Table 1). Zinc is particularly
important for regulating immune responses and
supporting both antiviral and antibacterial activity %7,
Insufficient zinc levels are linked with higher
vulnerability to infections, while adequate levels promote
balanced immune regulation and cytokine signalling ['%%],
Evidence from patients infected with torque tenovirus
(TTV) shows that zinc administration can enhance
immune responses [ Similarly, moderate
supplementation of zinc in combination with selenium
has been found to strengthen humoral immunity to the
influenza vaccine and elevate antibody titres [1%%),

Laboratory data indicate that zinc can inhibit the
replication of SARS-CoV-2 by blocking viral RNA
polymerase activity [''%. Compounds such as chloroquine
may act as zinc ionophores, facilitating intracellular zinc
uptake and further enhancing antiviral effects [,
Moreover, zinc may influence ACE2 enzyme activity and
modulate interferon-a (IFNa) production, thereby
improving antiviral signalling ['%®. Through its anti-
inflammatory actions—such as suppression of NF-«xB
signalling and regulation of T-cell function zinc can also
contribute to controlling the excessive cytokine response
observed in severe COVID-19 cases 112,

TABLE 1 | Overall role and impact of nutrition on
immune function.

Table 1: Role and Impact of Nutrients and Bioactive Compounds on Immune Responses

Category ;Eff:eﬁnct Role and Impact on Immune Responses
e Promotes cytokine and antibody synthesis.
e  Regulates both humoral and cellular immunity, especially T-cell activity.

Protein — . Supports DNA synthesis, repair, and cell division.
e  Facilitates the generation of nitric oxide, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px),
contributing to antioxidant defence.
. A group of . Strengthen antiviral immune defence.
Vitamins oo . . . . L Lo A
vitamins . Control immune-cell proliferation and differentiation through nuclear retinoic acid receptor activation.

B group vitamins

e Actas cofactors in immune metabolic pathways.
. Support viral clearance by regulating natural killer (NK) and CD8* cytotoxic T-cell functions.

C group vitamins

. Function as enzymatic cofactors and antioxidants that enhance phagocytosis, signalling, antibody production,
hormone balance, and leukocyte migration.

e Reduce lung inflammation.
D group vitamins|

Stimulate proliferation and activation of virus-specific immune cells via vitamin D receptors.
Promote cytokine production and immune-cell recruitment to infection sites.

e Exhibit antioxidant properties.
E group vitamins

signalling pathways.

e Regulate genes linked to T-cell proliferation, phagocytosis, and cytotoxicity.
. Control the generation of reactive oxygen (ROS) and nitrogen species (RNS) and modulate intracellular

. Enhances antiviral and antibacterial immunity by inhibiting viral RNA polymerase and ACE2 activity.

Minerals Zinc e Modulates inflammatory cytokine production.
. Promotes Thl cytokine responses and supports immune metabolic activity.
. Provides antioxidant and anti-inflammatory benefits.
Selenium . Increases T-cell proliferation.
. Upregulates IL-10 for immune regulation.
e Restrains viral replication and release.
Copper . Preyent.s virus‘-in-duced apoptosis. . ‘ . 4 ‘ ‘
e  Maintains antioxidant enzyme systems via ceruloplasmin, benzylamine oxidase, and superoxide dismutase
activity.
. . Acts as a cofactor in numerous enzymatic reactions.
Magnesium K . . . . .
e Regulates NF-kB, IL-6, C-reactive protein, and associated immune signalling pathways.
[Probiotics| — . Influence immune balance by up- or down-regulating immune responses depending on host needs.
Zinc in older adults report that elevated plasma zinc

Deficient zinc status has been linked to higher
vulnerability to viral infections, including those caused
by HIV and HCV [l Evidence from randomised
controlled trials (RCTs) suggests that zinc
supplementation enhances Thl-type immune activity by
stimulating IL-2 and IFN-y release following influenza
vaccination [, Additional RCT data indicate that
administering  high-dose  zinc  after  stem-cell
transplantation may restore thymic function and expand
CD4* naive T-cell populations, which corresponded with
reduced TTV reactivation risk !%7]. Conversely, studies
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concentrations do not significantly affect antibody
generation or lymphocyte proliferation after influenza
vaccination 4],

Selenium

Selenium is an essential trace element recognised for its
antioxidant and  anti-inflammatory  roles 1%,
Supplementation has been associated with accelerated
poliovirus clearance following influenza vaccination and
has demonstrated dose-dependent stimulation of T-cell
proliferation, along with increased IL-8 and IL-10



production. These immunologic changes, however, did
not yield marked improvements in influenza-specific
mucosal antibody titers 116,

Copper

Copper contributes to the differentiation and function of
immune cells and plays a vital role in antiviral defence
[117], Experimental studies have shown that complexes
containing copper and thujaplicin can mitigate influenza-
induced apoptosis, inhibit viral replication, and reduce
viral release from infected cells [''8]. Within host cells,
copper appears to interfere with multiple stages of viral
replication ['91, Sufficient copper intake supports
antioxidant defences by increasing the activity and serum
concentrations of ceruloplasmin, benzylamine oxidase,
and superoxide dismutase [!!3- 1201,

Magnesium

Magnesium is critical for maintaining immune balance
and serves as a cofactor in numerous enzymatic reactions
involved in innate and adaptive immunity [l 122,
Adequate intake helps regulate inflammatory signalling
through modulation of NF-kB, IL-6, and C-reactive
protein pathways ['231. Experimental models consistently
indicate that magnesium contributes to antiviral defence
mechanisms 2 1241 Clinically,  combined
supplementation with magnesium, vitamin D, and
vitamin B12 has been associated with milder COVID-19
progression and fewer cases requiring intensive care [12%),

Probiotics

SARS-CoV-2 infection alters gastrointestinal function
via ACE2- and TMPRSS2-mediated entry into intestinal
epithelial cells, triggering release of pro-inflammatory
cytokines and chemokines [?6 271 Elevated faecal
calprotectin and serum IL-6 concentrations serve as
markers of virus-induced intestinal inflammation [127],
Although evidence on probiotics and prebiotics in
COVID-19 remains limited, two RCTs involving
mechanically  ventilated patients reported that
supplementation with Lactobacillus rhamnosus GG,
Bacillus subtilis, and Enterococcus faecalis reduced the
incidence of ventilator-associated pneumonia compared
with placebo ['?% 12l Given the immunopathological

overlap between severe COVID-19 and ARDS,
probiotic-based  interventions  merit  continued
investigation.

Patients with COVID-19 frequently exhibit gut

microbiota dysbiosis, with depletion of beneficial genera
such as Eubacterium ventriosum, Faecalibacterium
prausnitzii, and Roseburia, alongside expansion of
opportunistic pathogens like Clostridium hathewayi and
Actinomyces viscosus 1% While causality remains
unclear, restoring microbiota balance may enhance
immune modulation and reduce inflammation M3,
Because dysbiosis is prevalent among elderly individuals
and those with metabolic or cardiovascular disorders 132,
microbiome-targeted nutritional strategies could improve
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recovery  outcomes, though RCT

confirmation is required 133,

large-scale

CONCLUSION

COVID-19 continues to exert a major global health
burden. Until long-term vaccine and therapeutic
coverage becomes universal, maintaining optimal
nutritional status is central to immune resilience.
Sufficient intake of essential micronutrients influences
infection susceptibility, therapeutic response, and
recovery potential. Diets abundant in vitamins and
minerals support recovery in individuals with
cardiovascular, pulmonary, or metabolic conditions, as
well as in patients affected by malnutrition or muscle
wasting [34, Implementing early, individualised nutrition
interventions throughout rehabilitation may improve
recovery trajectories and decrease the likelihood of long-
COVID 134,

From a public health standpoint, equitable access to
nutritious food must be prioritised. Coordinated
governmental and community programs that strengthen
food security and nutrition literacy are essential to reduce
health disparities and enhance preparedness for future
infectious disease threats.
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